The History and Geography of Human Genes

ABR:DGED PAPEREACK EDITION
L. Llca Cavalif-Sforza

Paolo Menozzi
Alberto Piazza

PRINCETON UNIVERSITY PRESS
PRINCETON, NEW JERSEY

```
Copytgn: 1094 by Prince:er Grouers:y Peess
```



```
Pance:or. New Jersey 08S40
In the G-:od Kingdem Parce:on Lanerser Piess,
Chiches:er, Hes: Sussex
Ali Rignis Resenved
Librar: of Congress Catalog!ng-in-Fiwolicaton Data
Cavall-Sform, L. (Luegi Luca':9%:-
    The b:s:ory and geography of humangenes
    Lug:Luca Cavalli-Sforza, Paoio Menoz:, Alber:o Piaza.
        p. cm.
    Inciudes bibliographical references and index.
    15BN G-69:-08:504 (unabndged eloth ed.)
    1SBN: 0-691-02505-9 (abricged pbk ed.)
    1. Human population genetics-His:ory. 2. Human evoluicr.
    3. Humar geography & Humar ocoulation genetics-Researeh.
    I. Menczz:, Paolo, 1946- . II Pizza2 Albere, 194:-
    ii. Tinle.
    QH4j1.C395 1993
    57.:2:5-d620 95-:93:5
```

Th:s book has been composed in T-mes Roman
Designed by dan Luly
--: ever Alustation is a map of ti: world showing fou: major ethnic regicrs. Afncans are yellow, Australians ted and Caucasians green. Mongloids show the greatesi variation ietannag some similarities with Europears on one side fa ligh: broun greenish tirge in middle Sibena'; and with Australians on the other (a proxish tolor in pars of America and on :he way :0 i:). The extens:ve gradien:s due to admixiares berween Africans and Caucasoids in North Africa, and berween Cawcascids and Mongoloids in Middle Asia, are cleariy visibie. (See chapter froo.)

Panceton U'niversiry Press books are printed on acid-free paper and met: the guideines for permanence and durbility of the Commitree on Produetion Guidelines for Book Longevity of the Council on Library Resources

Firs printing of the abridged paperback edition,

Printed in the Linited Sates of America

1098765432

ard therefore one amino acid is ver, frequent, reaching approxmate! yof of all known mutaris detemining afproxmase y of of an known mutaris detemmeng
the disease is distribution ir. Eurcpe is shown in figure 2.14.:0. The frequency at birh of the cisease itself is less well known, but is fcund. on the average, in 1 of $20 c 0$ of ail birits in Europe. It vares somewhat from county to country, bu: the frecuency of a genetic disease is nct ainays easy to estimate accurate!

Very recen: data indicate that the relative frequency of the common allele for cystic fibrosis ($\triangle F-508$) is especially tigh in a relatively small sample of Basques (see
f. 22.14 .101 . The geographic spread of the frequent allele cially high in a relatively small sample of Basques (see
f.g 2.14 .101 The geographic spread of the frequent allele is cuite similar to the first synthetic map for Europe and therefore :o that of the Mesolithic (pre-Veolithic) Europear gene pool. The conclusion would be that the mosi common cystic fibrosis allele in Europe is older than the spreac of agniculture and must have been especially frespreac of agnculture and must have been especially fre-
quent among Mesolithics. while most other alleles come from the Middle East or originated in Europe after the Neolithic diffusion.

Many of the polymophisms conemng resstancs ic malar:a and other diseases may be elasiony young but the great majority of polymorhic al!e'es that he have studied in secticns 2.10 and 2.13 are focrd ir. nearly a!! continents and herefore must have ar:edate the spread of am.h. Oniy a feu are kncont at :ee DNA level. and it is impossibie to say uhe:he: diferent mutations are hidden behind the same aile.e. The 100 RFLPs studied in section 2.4, however, are like y to have had a unique mutational origin, ard the geea: majorty of them are found in all continents excep: the Americas which have not yet been studied fo: these polymorphisms). There are reasons to think that most human polymorphisms are much older than the date of spread from Africa. Theoretically, in the absence of selection, the average age of poiymorchisms is comparable to that of the species. An estimate of the average time of appearance of the mutant allele of tiallelic human RFLPs is 700,000 years (Mountain et al unputl.).

2.15. A ERIEF SUMMARY OF HUMAN EVOLLTION

The analysis of phylogenetic trees has used many different sets of data: nuclear polymorphisms tested by electrophoresis or immunological techniques, restriction fragment polymorphisms of nuclear genes, and mitochondrial DNA. All methods show a somewhat greater difference between Africans and non-Africans than between other human groups. and offer some informatior: on dates supporting the interpretation that the origin of modem humans was in Africa. from which an expansion to the rest of the world started about 100 kya. The
interpretation rests on the assumption that evolutionary rates are reasonably constant. Some further comfor is derived from the consideration that the rates involved in the evolution of polymorphisms of nuclear genes and those of mtDNA are different; the first are determined mostly by differences in gene frequencies separating two populations, and the second by numbers of mutations separating two individuals. The dates to which they lead for the bifurcation of Africans and non-Africans are different, being of the order of 100 kya and 200 kya
espectively Given the ways in which these dates were cbtarred. his dfferente should be expes:ed. with the ;econd being greater than the first by ar amoun: that has not been deteminec. but pethaps migh: be estmated on the basis of theore: ca! considerations, All in a A . here is vasic agreemen: be:ween the rees oblained with miDMA and with nuciea: markers the late: giving mush more detail. It is wort rememberng trat ra-me the mitoshoncrial arcesior "Eve" has generated the false belie: that there was a time when there was only one woman alive.

On the question: at piace of origin, the archaeological field is diviced. A number of paieoanthropologists belie ve that modern humars originated in Africa. from which they spread to the res: of the world begiming about 100 kya . This is in agreement with the genetic da:a. A fair!y large number of antropologists reserve their opinion. Another: group belie.es that the evclution of Homo sapiens, and perhaps even its prececessor H. erectus proceeded in parallel al. over the Old Worid. and there was no expansion from Africa. The -mitochondra: data are at this point, the most usefui in hep:ng to reject this typothesis, given that the orgir of extant types of Asian miD'A is more recer.: than this hypothes:s would imply

It is 7or ye: pcsibie however. to exclude completely a partal partivation of archaic H sapiens from the Old World. New data and methods of analyss may heip in this direction. What is wey diffoult o conceve is a paralle: evolution over such a vast exparse of land, given the limited genetia exchange that could have occurred in earles :thes The capacty of the human genus to expand rapidy ove: a large fracion of the Eart's suriace is more in tune with the cea of specific expansions from a nucies are of ongin. Such expansions mus: have been determined by some imporant advantage, biological or cultural. It is not difficuit :o accept the idea that the expansion of modem humans must have been strongly influenced by the possession of greate: skills in communication by language. This increased ability to communicate is likely to have been extremely useful in favoring exploration and travel to unknown lands. Other technical improvements may have favored a trend to expansion. Alt.ough modern humans have now been found to have lived outside of Africa (in the Middle East) by about 100 kya, humans of this time in both Africa and the Middle East were biologically very similar to modern humans but culturally much less developed than at the time the real expansion began. perhaps 50 or 60 ky later. Many things may have happened in the meantime. in terms of sultural maturation and, perhaps, forward and backward movements between Africa and West Asia. Neanderthals are found in the Middle East after the earliest local appearance of modern humans in the same areas, and it has been suggested that they may have gained, or regained. lost ground in that period. The time between 100 and 50 kya (or. perhaps more exactly, between 90 and 60 kya) is
curently a biank from an archaeoiogiza! point of view We hope that ned discoveries will illumanate at At the moment, the ircecations are that at the end of the blazk period modem humans emerged with a new stone :echnology and startee a radiation that tock them to Europe, Austraila and New Guinea and Amerca. Wheche: they parially mixed with or totally suppiaried ear:ie: inhabitants - for example. Neanderthals in Europe and archaic H. sapiens in East Asia - is difficult to sta:e precisely on the basis of present knowledge.

Linguistic anc cultural diversity increased conspicuously after that time, and the major lirguistic families probably began less than 50 kya . Most of them are between 25 and 5 ky oid. Genetic dating of linguistic families can only be approximate, but it agrees with ideas expressed by a few linguists. Moreover. the archaeologica record shows increasing diversification. probabiy paralle: with that of language.

An unsolved probiem is determining the route by which the East was reached. Differences between Eas: isia and Scutheast Asia make it reasonabie to hypochesize that there might have been two routes. one through Central Asia and one through South Asia. Very litie. if any. evidence of them exists today (fg 2.:5.i) The occupation of Australia and New Guinea was the major: success siory of the southem route. but it eventually led to an evolutionary cul-de-sac, as the separation be:ween Oceania and Southeast Asia increased with the asing c : the sea levels in the times after the last glaciation. It was only with the development of new nautical skilis. $5000-$ 6000 years ago. by South-Eas: Asiar popuations who were also good farmers, that the Pacifis routes were increasing'y used In the last $3000-3500$ years the exparsion that generated the colonization of Polynesia begar. most probably originating in a nuclear area in Southeast Asia.
There are two weaknesses in the present aralysis. which will certainly require future work. One oit them is the very shor branch linking Caucasoids and. in paritular. Europeans to the phylogenetic tree. One hypothesis is that they might have originated from an admixture between their southwestem and northeastem neighbors. Africans and Mongoloids, between which Europeans are sandwiched. One cannot completely exclude other hypotheses. Particularly serious is the possible bias resulting from the fact that almost all known genetic polymorphisms have been detected in Europeans. It will be imporant to remove this bias. especially in future data collections. Another area of doubt is the relationship between New Guineans + Australians, Southeas: Asians and Norheast Asians. Our results have nor settled this question unequivocally. It seems likely that the uncertainty arises becar'se Southeast Asia is poorly known and may be heterogensous, with some populations having an imporant genetic component in common with northem Mongoloids and others with people from Oceania. The

Fig. 2.15.1 Pose bie his:ory and roues of exparsion of moden humans to the last to0 iy.
he:erogeneity may be in part due to ancient admixtures. ard the arow of nothern Morgoloids pointing south in figure 2.15. 1 express these considerations. There are also some undeniable physical similarites between northem and scuiner Mongcioids lead:ng one to wonder whether the have more in common than shoun by the trees of sections 2.3 and 2.4. In other words. a fully dichotomous tree may be unsatisfactory in this part of the world. but more abundant and better evidence would be necessary for developing this explanation further.

The passage from Asia to America was later than that tc Austraila or Europe, perhaps because it first required a genetic and cultural adaptation to the more rigid climates of Northeast Asia. Genetic data, however, seem to agree with an early arrival, perhaps around 30 kya ; possible uncertainties are discussed further in chapter 6.

Throughout the Paleolithic, population numbers remained small, leaving greater chance for random genetic drift to produce considerable diversification. Population size of a continental or subcontinental area at the beginning of expansion may have been on the order of $50,000-100,000$ individuals. In the late Paleolithic. much of human action was in Asia, and the occupation of the rest of the world proceeded from this continent. Given the greater limitations on life in the north. Asia was like a relatively narrow, large landmass developed more in longitude than latitude. Because genetic divergence was subject more to random than selective forces. much of the gradient of the human gene pool goes from west to east. The first principal component therefore
extends in this cirection and expiars isc of the :0:a human variation. showing only modera:e, if any. infuence of climatic factors at the level of the nuciear geres investigated. but a greater infuence on genetic factors involved in the adaptation of body build and bodily suriace characteristics. which notoriously respond to ctimate. A dichoromy is thus observed between genetic data and observations based on the physical consitution, which. is detectable also on modern and Sossil bones. This explains the discrepancy between the evolutionary histones reconstrucied from data on genes and on sku!ls for. in general, anthropometric data).

On:y in the last 10 ky , perhaps under increasing pcpulation pressure and climatic changes, did humans develop new food technologies, culminating in severa! different agricultural developments. These innovations caused the beginning of more rapid population growth, and in some cases of local expansions, which extended to ecologically similar areas, allowing the exploitation of domesticated plants and animals developed in the three major nuclear areas of agriculture. The consequent increases of population densities began a progressive freezing of drift effects. Farmers' expansions, followed by those of nomadic pastoralists, contributed in an important way to changing the patterns of gene geography: In spite of this, opportunities still remained for the survival of much local diversity, especially in refugia. few of which have been well examined.

A major conclusion is that linguistic and genetic evolution are closely related. In this chapter we have seen
this relationstio at the global level. bu: se veral investigations on specifc regions or peaple that we examine in the following shapters have given similar results. The main reason for the relationship is that the evolution of both depend or the same histons and geographic factors. We have seen in:: discrepancies are not impossible. given that genes can be parainy or even almost completely replacec under serain concitiors, and languages san a.so be repiaced. Language replacement is more bikely to happen. perhaps, ir. recent history, and there are well-known examples of it. One can also express the necessity of a relationship between genetic and linguistic evolution (and, more generally, cerain types of cultural evolution of which the evolution of language is a key exampie), considering the similarity of the re:evant mechanisms of transmission. Genes are clearly transmited frem ärents to children: in traditional societies, especia!!, in the absence of schools, cultura! tansmission (untorunately a pooriy investigated subject: see. however. Cava!li-Storza and Feidman 198:. Hewlett and Cavalli-Sfora 1986, also takes place mosity from parents to chideen, as does. presumably the transmission of language from generation to generation. Two prenomena tansmitted in basicaliy the same way are bound to be stongly sorreazed.

In ou: origra! paper (Cavalli-Sforza et a!. 1988; we expressed the strang conviction that language mus: have been a great asse: that considerabiy helped modem humans in theis exparsion and tha: it also may have limied or prevented acmixture with other forms of humans that were iess developed lirguistically. The lirguistic inferiority of the Veandernais (Lieberman 19:5. 1989) is contuoversia! (Falk 19:5), Nevertheless, the extreme complexity shared by all existing ruman languages seems inkely io be a produc: of a final step in linguistic evolution. which peaked in a.m.h. and was spread by them to the whole world An interesting relationship has been observed by Foley (1991). Using the genetic tree (CavalliSforza et al. 1988; and information on the numbers of languages per family given by Ruhlen (1987), he has shown that there is a very strong linear relation ($r=$ 0.91) between genetic distance between two groups separated by a node of the genetic tree and the number of languages spoken by the two groups together (see fig. 2.15.2). Although this evidence is indirect, and the correlation coefficient is biased upwards because the nodes of the tree are not independent, it adds to the persuasion that linguistic evolution goes hand-in-hand with the spread of modem humans.
The analysis of the genetics of human populations requires an enormous mass of information. Unforunately.

Fig. 2.15.2 According to Foley (99 :' there :s a strang reationship be:ween human genetic variaion a.e. .resutie groups. showing that genes and largueges -ma de diverge in sumilar ways. If genetis divessty found nomen of the successive major groupings (:op) of ining human populations is ploted against the numbe: of languages spoken by those groups, a strong linear ceat.onsh: is obtaned (bottom).
its retrieval has rarely been organized in an effocent wa: and the data base available is the result of thousands o: more or less haphazard collections and ana'y ses of blecd samples. An essential requirement of a sound ana!ysis is that a large number of genes be thoroughly studied :parallel on all populations of interest. Today, there have been substantial advances in the techniques of analysis. unfortunately accompanied by nontrivial cost increases. The number of populations that can enlighten us on the past history of humanity is shrinking continuously. Only perhaps one or two decades remain in which we still have access to these populations. From the point of view of genetic history, we are an endangered species, and it is essential to avoid delay before taking the recessary steps to preserve this important knowledge about ourselves.

6 AMERICA

```
6. Ceography anc envomment
& Prenistory oc:upaor of Americe
6:. Begmmags of agriaulure
6.4. Develormer: ir North America
6.5. Development in Cerimi. America
6.6. Development in South Amer:=
6.7. Physical anthropolos!
6.8. Lin@uistics
```

```
6.9 Phy!ozeneti= analysis st Amer:a
6.10 Phyogene:: 2naivs:s af nc,vicua razes
6.11 Comparssen of gene:ies win lingusties and
    geocraphy
6.12. Secgraphic maps si simgie genes
6.13. Synthe:に maps of Americu
6.1- Summian of the geretc sistory si Amer:a
```


6．1．GEOGRAPHYANDENVIRCNMENT

The A－merions．Norh and South．50m $16 r^{5}$ and $12 \sigma^{\circ}$ co the Ez－n＇s surace respectivery and the：Eumbiathe area is sigght：less than that of the lasgest ecrtinent． Asia．what compress 999_{c} of the Erth＇s suface．Bu： ：odays ：ota population of the Americas is only about IT ：incutng nonabcrigines）of the inhabitomes of the world．less the：a quarer that of Asia（athon is 60% ） At the ：ine of discovery，the population level was cor．－ paraive：－much lower but is not precisely known．At that time imponant poptiatior dersities existed oniy in Mex：＝0 and in the northem and centra！Andes．Three major denograpinc changes took place afier discovery （McEvedy and Jones 1978）．The native population de－ creased prastically everywhere and is now about 5% of the tota．population（much less in Norh America）：it alse uncerwent considerable admixture in many areas． and the mestizo population may be almost 20% ．White immigrants and their descendants became the absolute majority of the population in North America（the United States and Canada）and in the southern part of South America．African slaves were imponed for work on the plantations starting in 1650 and grew in numbers in most cases．especially in Brazil．Descendants of slaves now represent $15 \%-20 \%$ of the American population glob－ ally，an estimate made very imprecise by the extensive hybridization that took place．As usual，we confine our artention to the native populations living in the Americas before 1492，and begin by describing the environment．

North America．Two chains of mountains of very un－ equal altitude run along the eastem and westem coasts of North America：the Appalachians in the east have been considerably flattened by erosion，whereas the

Cordilleras in the west reath atuves of 6：94－The： extend fron Alaska ：o Mexico and in the resior at the： maxinum with，near the forteth paraliel．the ここといま： about one－third of the surface of the coriner：

The rest of Norn America is relative：Aa：the centa： shield ir the middle is 1400 fee： $42^{7} \mathrm{~m} / \mathrm{h} \mathrm{gh}$ ．on the 2% erage．but it descends in altitude both in he norn ：unaro Hudson Bay and in the scuth and southeast．：cused ：he lowlands and the Great Lakes region．The noriem．pans of the lou lands have been marked by moraines accumu－ lated in four major giacial acvances：the souther．part remained ice free and was moiced by rivers，of ahich the Mississippi is the most imporant

Because the continent spans latitudes from 65° ：0 a few degrees above the equator．climate and vegetainen are very diverse．The Arctic is mostly a cold deser： with only two months in which temperatures exceed the freezing point．Below the Arctic，in southern Canada，the climate is temperate and cool with frosty winters，short springs，and moderately humid and warm summers．The continental United States has cold to mild winters．de－ pending on latitude．and hot summers with ample rain－ fall．The western United States is very dry except on the coast，which enjoys，especially in its southern part，a Mediterranean climate．Central America has little vara－ tion in temperature with the seasons and has a mi．d cli－ mate with abundant precipitation，except in central areas． which can be very dry．

Two－thirds of North America was once forested．the type of trees depending on temperature and humid： The rest of the continent is drier，with grassland or desert． In the Great Plains of North America．allgrass praites formed the habitat of the bison（often called buffalo）fo：

Fig．6．1．1 Vegetaton zones is Amer． isa（Jemnings 1983）
many miller－ia Trop：al samarras are founc almos：only in pars of Cental Amenca the rorthem area，however． is mossty deser．wheereas tropical forest is extensive in the souther．Sowiancs The map of vegetation mustates the clitate and eatoste！condtions（fig 6．1．！

Sourh Amer：co．To some exten：．South America is a mirtor image of North America．Here too the wes：－ em mountains border the Pacific and reach as：ounding heights：they go from the extreme north to the ex－ treme south and are wider in the middle．Old．flatened highlands ocsur in the eas：in northem Guiana and in southem Brazil．Between these highlands is a very wide lowland，the Amazon basin．The Amazon basin occupies all the northeastem part of the continent and is covered by tropical rain forest，having very abundant precipita－ tion and little change in rain or temperature throughout the year．A relatively small fraction，about 10% of the
basin．is excellen：：or agriculture（＂varzea＂）because i： ：s flooded yearly when the rivers are high，bu：is roce continuously submerged．so that it is naturally fertilize every year，bu：the res：（＂：era firme＂）lends itself less to agriculture．Where the precipitation is not so heavy，the temperatures are higher and the seasons change．gene：－ ating trepical savannas common to the Orinoco basin． just northwest of the Amazon in the Brazilian plateau． Farther south is cri forest：and still more to the sou：h lies the basir of another great river，the Parana．Major grassland areas are the Pampas of norhem Argentina． farther south lies the Patagonia deser．
The Andes vary in climate and flora，depending on al－ titude and local conditions，from tropical forest to grasses and plants of small and medium height（＂paramos＂），to steppe（＂puna＂）that reach the snow line．The extreme south，at a latitude of 56° ，has glaciers and mountains． and a frigid climate．

6．2．PREHISTORY：OCCLPATION OF AMERICA

The prehistory of America is shoner than that of any other continent．and its beginnings are more obscure despite enormous interest among scientists who have contributed to the research．Thus，there is considerable uncertainty regarding the origins of native Americans and．as is often the case，uncertainty generates discus－ sion to the point of passion．

There is essential agreement on the idea that the peopling of Americas took place with the passage of nomadic Siberian hunters from Northeas：Asia to Alaska （Fagan 1987）．Other hypotheses have posited extraordi－ nary joumeys－for instance．from Africa to America or from America to Polynesia－but they are not supported by hard evidence（Bellwood 1979）．One problem，how．
ever, is tha: among the oldes: sites those tha: are less in cispute cut zenainly not entiony acsepted are in South America Moreover there are criv a few Siberian sites that ra: have been irhabited by pioneers who later occuplez Norin America Wellestablished Siberan sites are more recent than the oldest American sites. wrich are fer and difficult ic date. The oldest American sites are rot accepted oy some archaedogisis. whom others accuse of mainaming uneasonably nign standards (Bray 1988;. Briefy stated, the:e is strorg disagreement be:ween archaeologisis who believe that the earliest enEy into dort. America was $30-35 \mathrm{kya}$ (there have even been clatms of earlier sites) and those who are prepared to accept, on the basis of present evicence a first date of entry of 15 kya . We briefly review here some of the major fnds that are generaly acceped and indicate the major controversies.

There is siusiantial agreement on the lack of evicence of archaic Homo sapiens or eatlier : H pes in America All wide. arcer:ed Amercan site dates follow the disappearance of Neanderne's ar Europe and in Northeas: Asia. and there are no finds supporing the migration to America af human types preceding anatomically modern humans (amh.)

The as: glaciation occurted 30-13 xya. with a peak at 18 ky : the geograpry and environmen: of Amenca ard nornem Asia when the migrtion from Siberia to America is beife:ed to have taken place was different from :oday \ln late g.acial times (fg. 6.2.1). glaciers ocsupied a.mos: a!! c: Canada and par of the norh-centra! United States. Temperate and wopical climates were found in Norh America at much iouer lattudes than at present

The ropical fores had a somernat smaler exiersion. especialiy in South America

An ice-free corcior is be'ieved to have exsted be tween the easiem edge of the Rockies arc the... mense geciers occupying the centre! ard eas:en pans of Caraca, but the envirormental condrtions uere indoubtedly fairit frigid in the coridor. Perhaps mote a. portantly, at the presumed time of the crossing, the cons: ine was lower. due to water being retained in the poiar ice. This exposed the continetial shelf along the $0 . a \mathrm{~s}$. causing the :emporary disappearance of the Benns sira: A wide and fat land bridge. Beningia, replaced the s:rat cornecin:g Asia and America, and is believed :o have existed be:ween 25 and 15 kya . It is not comple:s: clear what the conditions for life were on Bering:a; : was protabily a largely treeless land with grasses. こurr birch, and shrubs, a mosaic of steppe and tundra. It was cold and dry with strong winter winds. Xeverte. less. there were mammoth, bison. horse antelape ard sraller animais (Fagan 1987; Schueger 1990: Ceraniv the land bridge favored passage betweer the corti-er.:s. W":hou: it, the passage would have had io have been made by bcat, but direct archaeclogical eviderce dipassage by water is diffocult to frid and. In this asse, tas not been dissovered

Conditions that permitted crossirg from isia to Arrerica by land existed for some time and ray have favored the passage of different groups in differen: penods. some by land and some along the coast. The anmate in Berngia was probably neve too attractive altoczt. perhaps no: very different from that of the Siberiar regions of origin. and it may have served as an incentive

Gaverec area

Exceses anmentai ste?
Tanta
iarga
iemperie an torest
iembenie seecruous tores:
uncimerentalec praine. grassana sente seppe and deser

Uncriterentasioc adone fermations
Desen

Uneinerema:ed tropical decourus tres ard grasenc

TIT1.1. Uncirerentulec Canboean :ortalions
777π Scrue steppe

Fig. 6.2.1 Glacial environment in the Americas abou: is kya (Jenn ngs :98:)
to conince migra．on a an easiern are finally southem direcior．

Severa！Siberiar sites could have been homes of the ancestors of the early Americans．

1．Abou： $20 \mathrm{x}: \mathrm{a}$ ，ir Ma． A and Afontova，in southem Sibera（see fig 6．2．2＇，there lived mammoth ard rein－ deer hunters sman to the mammoth innters of the west－

Fig．6．2．2 A－naeniogial sites in Paleoithic Sientia and Aiask Fagze iss
ern Russian steppes nort of the Black Sea：among the later，the best kroun lived at Mezinch or the Driefe： 18－14 kya（Fagan i987，Some of their tocis are simiar to the＂microblaces＂made ir．Norheas：Asia a：that time

2．At the cave situatec near Dyukhal a！so spel：ed Diukiai），rear the Alcian River，ar affuent of the Lena， a culture was found that was dated at $1-12$ kya．By 14 kya，this culture had already spread even farhe： north，up to the Artic Ocear：where a mammoth bury ing ground was found at 71° latitude an Berelekn．The discoverer believes its beginning to be eariie：and traces the origin of these people to northem China．The Diuk－ tai people used microblades but，urlike Ma：ta people． aiso made bifacial tools（Fagan 1987）．Microbiades were used for inset tools and appeared in norhert China 30 15 kya；they became common in Japan and perhaps Ko－ rea in the later pat of this period．

3．A third site is U＇shki Lake in Kamshatka where the oldest dates are around 14,000 b．C．The early Ushiki cul－ tures used stone－tipped spears，perhaps bows and arrows． The lare Ushiki cuiture（ $12,000-10,000 \mathrm{~B} . \mathrm{c}$ ）is simila：： 0 the Diuktai culture，but more advanced，and has pesu－ liarties of its own．A burial of a husky dared to 11 kya is the oldest norhem find of a domesticated dog ard may have been corrected with the use of dog sleds．Mary sites farther norh on the Chuckshi peninsuia isee fig 6．2．2）seem to belong to the late L＇shki culture ard shou some intermediacy with Alaskan sites（Dikov ！988；

The earlies：archaeclogical scenaro in North Ame：ica ircludes sites in cen：ral Alaska（fig．6．2．2）and oth－ ers in the continen：al United States（in the pans that were not glaciated at the time）and Mexico（figs 6．2．2． 6．2．3；Tool finds at Old Crow Flats ir the northem

ke Snee：

Fig．6．2．3 Paleo－Indian sites in Amenta （Fagan 1987；Guidon 1987）．

Yukon (Canada) near the Aiaskan border are undcubt eciy human. but the date of $27 \mathrm{k}:$ claimed for them is disputed because it comes from animal bones. and there is no consensus that the: were "modifed" by humans. A human arifact made of bone that had an older cate has been redated to 13.9 kva . Arother site close to Old Cow. Blue Fish Cave, has bones with dates of $i 5.5$ kya and 12 kya . an adition to humar arifacts, including microblades simi?ar to those of the Diukiat caves. A lower laver at Elue Fish has oroken bones darea $8.000-10.000$ years earlier, but signs of human occupation are not as clear as for the late: layers.

Mary sites in Alaska have been dated to 12-10 kya: they contain bifaces and/or misrobiades reminiscent of the Siberian cultures (Denali complex. Dry Creek. Akmax). In summary, there is no evicence on which agree. ment has been reached tha: Alaska was occupied by humans before 15 kya.
in the cential United States, there was a major explosion of archaeoiogiza! finds marked by projectile points named after the Ciows site mhist is dated to the period 11 I-1i kya. There are however, severai finds olcer than Ciovis. A conservative analvsis by Fagan (1987; lis:s a feu places that are pre-Clowis and ir his view more sa:isfacior: (see location of sites in fg. 6.2.3) For Rock Cave, Oregon-13.25 kva; Willsor. Bute Cave, Idaho-13-14.5 kva: Meadowcrof: Rockshelter. Pennsylvania mere :hat: 12 kya (up to 16.175 kya . Adovasio et al. :982:, Little Sait Spring. Florida- 12 kya .

Accorcing :o Mac.Veish (1978). Mexico has dates greste: than 30 kya associated with choppirg-chopper :ools. fcilowed by a phase $30-15 \mathrm{kya}$ with bone tools and a unifacial industry (see criticism in Fagan 1987). Other archaeologists also believe dates eariier than 15 kya for Mexico and South America (see aiso Lynch 1990). Here we cite four major examples of early dates for South American sites.

The Pikimachay Caves in Pers have a more reliable later ocsupation at 14 kya and ar oider one at 20 kya considered less reliable.

Dates of $14,200=1150$ at Alice Boer Site in southcentral Brazil are more reliable than those of earlier tools from a lower layer at the same site, dated to $20-40$ kya. Pedra Furada in the northeastem Brazilian plateau (Guidon 1987) has yielded various layers with signs of human occupation, the oldest of which was dated to 32 kya. Monteverde (south-central Chile) is an open settlement with excellent conservation. The people there were mammoth hunters living 12-14 kya.
It is difficult for nonarchaeologists to form a final opinion at this stage, but wide disagreement obviously exists among specialisis. It is understandable that there is little tendency to rely on radiocarbon dates especially if they are unique, have high standard error, or come from sampies that could have been contaminated with older material. Other often-cited objections are that the strat-
 irplements unceram. The late co evcerce for e=tiv and cotally satisfactory sites ir, Norn a-meraco ss deariy one of the mosives for the resistarse co areentog sies an:erior to 14 kya or 15 kya sears in Centrat ard Siun America. The idea that there is toc shor ar miena of time between occupation of Alaska and that oi Sowih A-rerica is not a major obsiacie. since romade hurers could well have covered disiances of mar: meusarde of miles in a period of 1000 years. In fact. the whole curnev from the extreme nort to the extreme south migh: have taken about that long (Marin 1973). The probie-n.s that arise from accepting the hypothesis of this ex:ce-e:y rapid displacement are of two kinds: the hunters had li:the time to adjust to new environments it they roved so quickly from norh to scuth across such a wide and diverse comment, and they must have reprocued at a high rate in order not to dilue themselves coo much in the race toward the south. Approximate caicuacons rodicate. however, that the hypcthes: of rafic -ルこerer: is not unacseptable (Cavali-Sforza !cses, hlodens at ze. netic consequences of this rapic advance are dis: ussed in the last section of the chapte: The protiem of acaziation to new environments musi have been simplited by the avallability of the same prey (mammoth masiodor. and probably others) throughout the con:inen. The ices that South America was occupied before :he north, eithe: from the Pacific or the Atlantic Ocear. is move 2 A . to accept. Whatever trace of African geres a-e :Lu.. among living people, it is much more likeiy io have originated from admixiure with African slaves atier the sixteenth century. The Pacific islands cioses: : South America are quite far away and were ocsupied oniy ver. late. in the last two thousand years.

There is no problem with the essentials of the Ciovis culture, which developed around 11.5 kya or: the Great Plains of North America and lasted for about 500 years. It is marked by mammoth and bison butcher. ing places, where bones of other animals are also cccasionally found. The mammoths were kilied with spears headed with projectiles that had characteristically futed stone points and were given additional thrust by usirg spear-throwers (known as atlarl). This culture takes its name from Clovis, one of the important sites; it was supported by a scarce and scattered population. Its origin ss uncertain: its end coincided with the disappearance of mammoths from the plains. Shorly thereafter, these animals disappeared from all of America along with several other large mammals that became extinct between 12 and 10 kya , including the mastodon (another elephant), the saber-toothed cat. the horse. several camels. giar: sloths. and others (Grayson 1987). One large mammal that survived and was still flourishing on the Great Plains until a few hundred years ago is the bison.

The disappearance of the big mammals has reseived different interpretations. Martin (1973) suggestec that it
was due to cuerkit anct star：ed ir Nort A－merica ard was cortinued in South Americe by hurie：s tra：ocou－ pied the whole of a－merica in pursuit of this prey．This hypothesis howeve：suggestive is cerian，simplistio Pleistocena overk．i．as been advanced as an explana－ tion for rany sit．ias exinctions tha：happe eed a：about this time in many pars of the worta anough overtunt－ ing may have been a parial cause，it seems like！that the change of cimate in the postglacia：perioc also had a strong impac：by causing profound ecological a．teations． Evidence that it affested the fauna comes from the ob－ servation that large extinctions of bircs also oceured at the same time，whereas small mammals survived and changed the：－range．Moving to other，more acceprable envicnments was cerainily a mode of adaptation ：c sli－ matic shange Gravson 198\％）that was not equally open to large animas．The bison，however．couic survive be－ cause i：was not bound by its digestive s．stem to eat only the ：all grass of ine archa：－praines but aiso the shot grass that replacee it in posiglacial times．After the disappeatace of the mammoths，bison－hunting be－ came the major soutce of food and othe：commodities （bones，hides．etc ；Weapons changed somewhat，and ne＇t proienile points were developed from the Clovis points There ias some slow evotution in the huraing techacues bu：in the Pians the bisor remaned the ma－ jor sciree di food ior m．thenn：a Oniy the introduction． of tre ronse and the gun atter the Spanis．：$o n$ çuest in the earl；six：eenth sentur：generated a dramatic change． The biscr then aate very close to extinction ard was saved coly oy proteztion in govemmen：resenes at the beginning ot ins century

Whatever the frsi date of entr．betweer 35 and 15 kya．it is clesr that there was more than one migration． The inguistic and biological evivence is discussed in sections 6.8 and $6.9-6.13$

The oldest migrtion from Siberia was that of the Paleo－Indians，to which the above discussion refers，and led to the peopling of the entire continent．There may have been a series of migrational waves，not simply one， or there may even have been a continuous flow．The other two migrations were both later and led to the occupation of more limited and well－defined areas in the north．

Another migration，presumably a second one（15－10 kya）is named after the Na－Dene family of languages spoken by these people．They settled in southem Alaska and on the northwestern coast of North America．perhaps only a little later than the Paleo－Indians．Much more re－ cenily，at the beginning of the present millennium．some Na －Dene groups migrated farther south．

The third migration was that of the Eskimo－Aleut（ca． 10 kya ），whe kept to their Arctic and sub－Arctic habi－ tats．with the Aleuts occupying the Aleutian islands and the Eskimos occupying Alaskia and the northern coast of North America．spreading later as far as Greenland． There are still a few Eskimos in the extreme northeast
of the USSR，bu：Siberiar Eskimos are believed to have reentered Asia from the Ameticas and shouid not be zon－ siderd．hereiore an aboriginal Asiar graup

The orizira：Asiar locations of the lia－Dene and Eskimo－Aeut are rot somplete！！cles：but are perhaps easier to f：ir：0 the general archaeongical picture than tha：of Paleo－Indians，for whom the urceram：of the time of orgir（ $35-15 \mathrm{k}$ a）is likely to be wht us some－ what longer It is possible tha：da－Dere anc Eskimo－ Aleuts had common origins in Asia．

Dikov（1988）has suggested that the late Ushiki cu：－ ture，dated $10-12 \mathrm{kya}$ and located or the eastem coas： of the Kamchatka peninsula，shows simila－ties with cul－ tures of Alaska and British Columbia and may have contributed to the Eskimo or the Na－Dene populations or both．Diko also discovered a suiture or the south． eastem Chukchi peninsula at Puturai Pass．in cicse proximity to the Bering Sea，that has a technoite： different from other Asian cultures and similar io that of the Gal！aghe：Fiin：station ir the Brooks Range o： northem Alaska．It is cared to $10.549=150$ years age ard also has similarities with the culture of Arangua （fig．6．2．2），a small island in the Aleutians near Lmrai lsland．The Anangula culture is the oldest known in the Aleutians（dated 2： 8 － $\mathrm{k}: \mathrm{a}$ ）．Laughlin（ 1980 suggested that Eskimos ard Aleuts both come from Ararguia and that the oscupatior．of the Aleution Islards begat．from it．proceeding ooth westward and eastuare from there The earliest cocupansy of the westem and eastem ends of the chain of isiands is currently dated to 3000 vears ago，but the most interesting early sites of these fisher－ men and sea－mammal hunters may be submerged．The first known dure o：occupation of Ananguia has also been suggested（Lachhlin 1980）as the date of separation of Aleuts and Eskimos．Fagan（1987）indicated more son－ servative：y a date before 4000 years ago．While Aleuts remained on the islands that carry their name and mostly maintained their primary skilis in hunting sea mammals． Eskimos developed transporation skills across the Arctic and hunced not only sea but also land mammals（musk ox and caribou）．The Dorset culture（Jennings 1983）rarged from the Northwestem Territory in Canada to the Hud－ son Bay．Labrador．Newfoundland．and Greenland by 1000 B．C．，on the average，but there are signs of earlier occupancy of these regions by a pre－Dorset culture．

The difference in origin of Na －Dene and Eskimo－Aleut remains to be clarified．The coast of the Pacific North－ west was colonized by． Na －Dene speakers，but the exact time sequence is not clear．Queen Chariotte Island．off the coas：of British Columbia，was continuously inhab－ ited between 7000 and 5000 years ago，but the area may have been occupied earlier．The populations of the north－ west coast developed a special way of life，reaching high densities especially at the mouths of rivers where salmon was easy to catch．Their cultures at the time of European contact allow us to place them amono the worid＇s m．ost
successul :oragers, and they were the sutjec: of classical research in cu'tural anthropolosy

The easem soas: of Greenland was se:ted by Vikings corring from . Norway and lceland in the nimthor tenth century a $こ$. but :he Viking settlement losi contac: with Europe anc disappeared in the fiteerth century. Perhaps ir. that eary arme and probabiy later after the Danes seti.ec in Creeniand hesiming in a ∂. 172 , there was some degree of admixise with people of Extopean origin.

In summaz, there is little agreement about the first occupation of the Americas, possibe dates vary from 35 to 15 kya . There is agreemert that his firsi migration came from Siberia via Beringia and was followed by the rapic occupation of the whole continent by "PaleoInciars." The next settlement, on the norhwestem coast

6.3. Begnivings of acr:cllture

The develozment of human pepulatiors was very unecual in the various regions of Amertas. The PaleoInciar nunees occupied the continent with extrorcinary rapicity; there later develofed loca. huntire traditions that lasied for millenria in some areas. though ineviably with tore or :ess continuous cultura. sharges and people displacemen:s. The posi-Paleo-Irdian perod is often cailed the Archaic Pericd or later huming-and-foraging period.

The :ranstion to food production from the foraging econcmy -that s the hunting-gotheing and. near the water. the sshing economy - is sometimes called the Formative Period: it occured at very different times and in differen: ways in the various regions. In the periods preceding agriculture or in its early development. population density increased somewhat. a stimulus to technological acivance in food procuction. The development of domesticated plants and animals and their adoption as staple food was always a relatively slow process. especially in the Americas, for reasons that depend in part on geography and in par on the nature of the domesticates themselves. Compared with Europe and East Asia, diffusion of agniculture to neighboring regions was slower and more limited. Therefore, at the time of European contact, piants had been cultivated for almost 10 millennia in areas like Mexico and the westem part of South America, where important empires with large populations had developed. In many other regions, however, large numbers of American natives were still huntergatherers. This was true in particular of the Northwest coast North American Indians, the Na-Dene, and of Californians; but in both regions relatively high population densities had been reached at the time of contact and complex societies t ad developed. especially among the Na-Dene. The density and, according to some, social complexity of these hunter-gatherers were greater than in other parts of North America that offered only
 tributed to Na-Dene-speaking peosie The inire arould 10 kya or later. led to the oceupaiton of the Aros: 20 as: by Esk:Tos. The three-migrations theory has seen pr: posed ty Greenberg et a! (logt : see aso Croenzer: and Ruhien (i992). It is based on Singuiste denai: are genetic irformation, as we shal! see in the rest a i.: ; chapter. A group of hrguists (ses 6.8: vigorous: opposes the interpretation of inswisic data proposed 6 . Greenberg isee Ruhlen 198:. I991, a!so Rass :90. Wrigt: ival

Other useful references are Kirk and Sza:h-m (1985). Aikens (1990), and Rumien (1990, as we... as chapters 54 and 55 of the Camondge Encscoopeda a: Archaeolog:
marginai. rescurces and where agrauture even if : : has been adopted as a partial source of food, had c-it natioe developrient

The beginaings of agroulture in Ameriva are perimas stightiy later than those in the Nidele Eas: and in China By the vear 9000 3.p. Midcle Easien agrocuitue uas aireacy a complex economic sustem using bo: ammad and plant domesticates tha: could be expored to neerty regions with a somewhat smilar ecoiog: Intiai deve:opments in Mexico and the normen and certa: A-Ses took place in an environment ard with domesticates on: widely represented outsice the origiral area. Feu : an: of the original srops had the potential of being easit! exported to a wide area around that of origin before jeirs more fully developed. unlike the Middle Easter. demesicates of wheat. barlcy, sheep, goats, and cante. In addition. agriculture in America began in areas like cenera: Mexico and the western part of South America (mosily Ecuador and Peru), which were to some extent unicue or isolated. The Mexican plateau enjoyed a temperate siimate not found in much dreer northem Mexico nor in the tropical forest of the southern part of Central America.

The Andes were another unique environment in whish extreme differences in altitude at a short distance provided a great variety of small niches, each suitable for very different types of economic activities. In time. this variety was cleverly used by what is called a "vertical pattern" of exploitation, namely by foraging, cultivating. or breeding very different plants and animals at different altitudes, often very close together, and exchanging these products by a complex network of rade and communications. Systems of seasonal migrations aiso ceveloped. similar but not entirely comparable to "transhumance" in the Old World. It took time, however, before the social and political conditions of these populations were such that the extraordinary variety of available environmerts could be tumed into a source of wealth.

Native Amercar．s developed a geas：rumber of do－ mesticated piants for a vare：y of uses（Pickersgii and Heise：19－7：Mar：of them．like maize potatoes and torratees，were exponed ：o Europe after their discovery in the New Worid and acquired primary imponance as staple food in the Old Worid．Other American piants like manioc were expores io tropical．Ansca and radicany ai－ rered the loca：food customs．The firs：piar：domesticated in America may have been the bo：le goud（Lathrap 1977）．at least 9500 but possibiy 11,000 years ago，be－ cause of its usefulness as a water container．Maize was domesticated from local piants in Mexico at Tehuacar． and Tamaulipas arcurd 9500 years ago．bu：initially－ and for many thousands of years－it remained a small component of the diet．Originally，maize cobs were one－ renth or less the size of moder．cors Cob size greu with rematkable reguiarity over the milienaia．presum－ ably because of antificial selection exercisec constiously or subconsciousiy by the breaders．who miy have been sysematically choosing the best cobs for reproduction． At the time of the Spanish conquest of Mexico．agri－ culwe formed an imporant part of the food supply． which was aug－mented by the produsts of hurting and gathenng It is more or less arbinatily assumed that agribuiture became a major source of food supply at a ＂cr：ica：＂ime about 4000 years ago．A：that time．the vied of maze was suffeent to suppon a sedentary pop－ ulation：pottery mace its frst appeararice ther．much late thar in Europe and Asia and almos：cemainly inde－ penden：l；Bears were also domesticated early in Mex－ ico．wita the fist examples $9000-10.500$ years old they are a good compiemer：to the maize diet because they suppl：essental amino acios deficient in maze．Squash was soon added to maize and beans．forming the Amer－ icar．Indian triad of stapie foods famous for being nu－ tritionaily well balanced．Potatoss probably came from Coombia（ 10 kya；Cotton was grown for use as a tex－ tile．Most of these crops could not grow in tropical envi－ rorments，such as the lowlands of South America．where instead manioc was firs：domesticated．It later spread to orher areas of tropical forest outside the continent．

Few animals were domesticated；however．the use of dog meat for food may be 6000 years old．The turkey is first found in Mexico from 300 b．c．In the central Andes considerable use was made of domestic camelids （llamas，alpacas）．which became increasingly common in the last 8000 years for transportation and meat．Guinea pigs were domesticated in Colombia and Peru for meat probably in the last 4000 years．Figure 6.3 .1 shows the sites of earliest domestication in America（Bray 1980）．

At the time of European contact．American natives were still in the ston：age：the only widely used metals． gold and silver．had almost entirely omamental appli－ cations．Some native copper was used for weapons and omaments．Even so，at the time of contact．two major empires with large populations had developed in Mexico

Fig．6．3．1 Distribution of probabie piases of $=2 \cdot$ ： domesuration Bray ：980：
and Peru Elsewhere population density was siti，low， although it had increased in the last millennia over the very low densities characteristio of the initial period． The high mobility of the Paleo－Indians aliowed ther． to occupy the whole continent rapidly，but later popu－ lation growth was slow until the last two or three mil－ lennia and increased almost exclusively in areas where previous important agricultural development had os－ curred．The number of American aboriginals at the time of contact is very imprecisely known and varies greatly with the authors．Early estimates by Kroeber（1939）and Mooney（1928）（whose estimates differ little from Kroe－ ber＇s）give a total of 1.2 million for all of North America． of which the largest components（in thousands of indi－ viduals）come from Califomia（260），Canada（190），the Gulf States（115），and the Plains（100）．Later estima：es are higher．up to 5 million for the United States（Russel： 1987）and 300,000 or more in Canada（Charbonneau 1984）．Meso－America was the most densely populated． with perhaps 6－25 million people（McEvedy and Jones 1978）．For central Mexico，Cook and Borah（1971）sug． gested a population of almost 17 million in A．D． 1532. down to 6 million in a．D． 1548 and 1 million in 1608 ； but Zambardino（1980）corrected the 1548 estimate to
3.6 million in Peru，the Sparish viceroy estmared 1.3 millior．in $15=2$ ．dour to 600.000×1620（Sanchez Alboricz ： 19^{-7}
The uncerasinty of these estimates should not be sur－ prising Censuses are difficul：ever under optimal con－ ditions：a：ine ：ume of conquest，they were rate even in Europe ard he：e was ne：ther erougt nerest nor lech－ nical skil！s for taning them out in the colonies．the oc－ cupation of unth remained incomple：e for a iong time． In any asse guanat．e evience shous that population numbers deciree raplily after the conquest，with the spread o：epicemics brought by the conquerors and the destrution of the preexistirg civiizations．Later cen－ suses are therefore of lithle use．

Abonginal population densities la－gely reflected the degree of developmert of agriculture and social orga－ nization，being highe：where the his：ory of agricultural cevelor－ment a as older．An exception was Norh Amer－ ica，where the nonagriculturai socienes of the west had relatively high densities because of exceptionally favor－ able envirorments anc aciarced socioculural adapta－ tions．By contest centel ard eastem Norh Amenca hac orly a shon agriculural hiscory and had not reached hagh censties at the ：me of cortact
As nc：ed eisernere（ses．2．7．－－5．2），the onset of agricuture and its successive deseopmer：is of con－ sidembie imporance from the point of vew of popula－ tion gene：is in that the trarsition from food collection to fooc producion usually increased populaticn density and thus geneal：y decreased the effect of random gene：to drf．is als：atered the patem of migration in many ways．usua．\％recucing incividual megration by causing the population to become more sedentary．But migration was always higher in eariy agricultural imes because ini－ tal agriculare was of the shifting type（moving to new fields as soil ferility was falling or for other reasons）and in many areas stil remains at this stage．Population satu－ ration follow：ng initial growth is expected to cause cen－ trifuga：migation toward new unexploited felds，when these are avalable．seting in a slow wave of advance of
the agricuitural population toware hess dense areas The
 where cuhivated crops had become the maor soure at food．and where strong prys seal bamers like mountans or desers did not impede maration．These acretuens occurred relatively late in Ameras．ater the Fomane Period and therefore after 1000 years ap It is urctea： whether rapid increases of population density in Aree． ica caused major demic exparsions as they did in Europe or Africa．Mexican agriculure was bom in the highiards and expanded late to the nort．．wu：it is not clear if treere was a demic component：the norhem Mexican deser must have acted as a buffer tha：slowed northuard ex． pansions．Agriculture probably spread from Mex：eo ：o the soum，but there may well have been setrograde fow The development that took place in Meso－Americe tas much ir common with that in the northem Andes．Da：es are probab！y not known in enough detall to ailow s：uedy of the spread to the south．Lathrap（ $19-7$ ），howeve． has given tentative dates and directions of exparsion for Cerirai and South America．The Andean ：ype of exo omy was suitable for the paricuiar envionment of the Andes，and much of it remained confine to is．Fowsier． manioc cultivation，which had an enormcus ：－mpas：or tropica：agriculture．may have origina：ed in the fores： near the central Andes．The natural way of cormenca－ tion in the South American plains was atorg mees．and it is no：surprising if spread in this natural ne：wot inas fast（Lathrop 1977）．

As a direct consequence of the ecoromic hasory we have cutined－mainly the iate and limated expans：cn of： agriculture－and its highly localized development．Fof－ ulation density remained low in most areas，and the so－ cial structure stayed fragmentary．leating to high gene：ic drift and with it．high local variation．In the following sections．the development of various regions before and after agriculture is briefly outilined．Survers of the sub－ ject ard references can be found in Jennirgs（198引）ard in chapter 56 of the Cambridge Encyclopecia of Arehae． ology．

6．4．Development in North America

Agricuiture artived late in North America from Mex－ ico，and never reached the westem coast during the pre－ contact period．For a general overview of the pre－and post－agricultural development，it is convenient to dis－ tinguish fou：large areas：the West，the Southwest，the central region（the Plains），and the East．
1．The West includes for our purposes Califormia，the Great Basin（Nevada and Utar），and the Plateau（Ilaho． eastern Washington，and northeastem Oregon）．Here，as else where the more immediate descendants of the Paleo－ Indian hunters had to cope with an environment that was
becoming warmer and drier．Seven thousand years ago． the climate was already similar to the modern one．But even by 9000 years ago，there was some evidence of a beginning of local differentiation of cultures．A subsian－ tial development of the forging population，accompa－ nied by a trend toward population increase，began only about 3000 years ago but 500 years later in the iniericr （Aikens 1983）．It was once believed that the social sys－ tem was extremely simple，especially in Califomia，but this view is being corrected．Without increasing sophist－ cation．they would not have eventually reached relatively
high cersi：y and loca：weath．The foraging peoples in the West were highly secentary，and there was sys：ertatic exchange and trade between local populations．
2．Agnculure from Mexico moved firs： 0 its near－ es：neighbor．the Southwest．Defined geographically in various ways，it usually includes Anzona，New Mex－ ico．Coloraco，and southerm Liah．I：is a very dy and almost desert area．but in the Archaic Period．and some－ times even duning the Paleo－Indian Period in the eastert： moiety of the Southwest，there developed cultures of foragers tha：lasted for millemia．until the beginning of a secentary－horticultural mode of hiving in the Formative Period．The introduction of some cultigens from Mex－ ico．like maize，may be as old as 3000 years b P or more： a safer date is 2500 b．p．（Lipe 1983）．The beginning of a racically new culture（see fig．6．4．1）is seer．with the Hohokam sulture in southem Amzona，saning about 2000 years $2 g 0$ ．According to some，the Hohoxam were migrants from northem Mexico： 10 others，they were lo－ cal inhabitants who were under cultural Mesc－American infuence（Lipe 198：）．They grew maize，bears．squast．

Fig．6．4．1 Geograptic location of the major Norih American agriculturai groups（from Whitehouse and Whitehouse 1975： Griffin 1980）．A．Ftemont；B．Anasazi：C．Hohokam： D．Mogollon：E．Middle Missouri：F．Central plains：G． Sourthern plains：H．Onrou；1．Caddoan Mississippian： J．Plaquemine：K．Middle Mississippian：L．For Ancient； M．Appaiachian Mississippian：N．Hurona：O．Iroquois： P．Monongahela．1．Hopi：2．Navaho：3．Zuni，4．Apache： 5．Pims：6．Papago．
and cotion，made ceramics，and u：th imgator were abie to colonize a vas：area．The Honokam are be：：eved ：c be ancestral to the Papago anci Pima．who sti．．．ive in the same general resion．The case for continuity of aniture from the Hokoham to the Pima－Papazo is Reasoraooy strong．

North of the Hohokam，the Ancsaz：cuiture ma：have developed directly from an earie：Archaic culture tha： lasted through the millennia（the Oshara），probably with the contribution of migrants．Maize beans and sopuash are well documented by A D．600．at which ti－e the pepu－ lation，originaily rather diffuse，began to colles：ir small separate senlements．Between a．d 900 and 1100 ，large villages of Pueblo－type appear at Chaco Caryon in north－ western New Mexico．There were cycles in which large villages（Pueblos）were formed，then abandoned soliec－ tively when the population moved to other places．often io form larger pueblos．It is believed that the increase in village size made it possible to engage in imgation works of greater magnitude．Conflicts with ammigrants to the area like the Apache and Navajo were eather be－ lieved to have been responsible fo：the movenent of the pueblos．but it is now known that these Na－Dere speakers arrived in the area after A． 1200 ．Many ne a setilements were built and suddenily abancored shori： thereafter，at dates that are accurtely known tharks to the study of dendrochronology，the secuence of rings in trees．The reasons for movement are less clear．Among the current explanations for the abandorment of puetes is the recert discovery of cooling and diying of the loca． ciimate around a D 1100 ．leading these peopie to searct． for areas more suitable for agriculture because more water was available．The descendants of the Anasazi are the modem Pueblo Indians（Hopi．Zuni．etc： Lipe 1983）．
Another culture，the Mogollon，stared eas：of the Ho－ hokam and at about the same time，reached its maximum extension around a D． 900 ．It was eventually absorbed into the western Puebio culture under the influence of the Anasazi．Other groups that developed a farming cul－ ture in the area，and that are not easily identified with modem descendants．include the Freemont in Utah，the most northern group in the Southwest．

3．Unlike the Southwest，which is dry，the East enjoys considerable rainfall，which favored the development of a rich flora and fauna．This area includes the valleys of two major rivers（the Mississippi and the Tennessee）． the Appalachian region，and extends farther northeast． In the Paleo－Indian Period，the Clovis hunters were the dominant culture．followed by the Dalton culture，which clearly derives from the Clovis，but is adapted to a new target，deer．In Paleo－Indian and Archaic times the popu－ lation was probably scarce and diffuse．made up of smal！ mobile bands with no capacity for food storage．

The transition to a sedentary life was spread over a long period，and domestication of some native plants，
like surfouer and amarart, may towe preceded the introcuesen of cultigens of Mexizar crigin. An innovation is the bu:cing of lage mouncs as at Poverty Point. Lowisiana. with dates raging from 1700 :0 870 BC (Jenrings 1983). The size of this mourc (a diameter of 1200 m indicates that a degree of social complexity had been resched that made i: possible to build such monumenai works. Smalle: mounds. usually burias. are very cormon. Domesticated scessh is krown from the area. but could not have formed an important part of the food supply; maze came semewha: later Pontery. rare in the beginning, was widespread by 700 BC . The pofulatior clearly became more sedentary during this period, usually called the Hoperellan. but crigy later (a.D $700-1000$) did clear signs of shifting agriculture appear (the Mississippian period), stll combined. as is usual in inital periods, with hunting and gathering. The principal site is Cahokia, near the Mississippi River. almost opposite St. Louis, Missouri Production of maize and squash increased. and beans were added around AD 1000. Communities anged in size form 100 to 1000 , and the !arge: ores showed indications of social stratification, wh chiefs or priests directing vere-morials, mound construe:icns, and agriculural operations. This culture. Oneora. spread norh to north-wester. Illinois and southem Wiscorsin after to 1000 and had connections with othe: rearby culures. Whazes were often fortified (Jemings : 5 SS)

6.5. DEvELOPMENT IN CEMTRAL AMERICA

The early development of agriculture a: centers like Tehuacín, south of Mexico City, are Tamaulipas, northwes: of the capital, has already been described. The slow emergence of an urban civilization refiects the long time necessary to develop an efficient agriculture in a challenging environment where techniques of intigation were necessary in most of the area. The first indication of water control is in Tehuacán 6000 years ago. Places discussed late: are shown in figure 6.5.1.
In the Fomative Period (2500 b.c.-a.d. 300), the basis of the Meso-American civilization was laid through the development of intensive imgation, astronomical observations, ceremonial centers and architecture, and hieroglyphic writing. The first great civilization was the Olmec ($1200-600$ в.c.) which developed its greatest monuments (the colossal stone heads of La venta. San Lorenzo, and others) in an area of the Gulf coast. But the Olmecs established an exchange system that greatly extended and unified smaller-scale systems existing before in their area and in other areas of Meso-America. thus favoring the spread of cultural diffusion and rade throughout all Meso-America. After

- Berueer the Southues: ard the Ens: are the Farns. which ater the disappearance of the foresiaroud 10,006 B.p became a wide grassland occupied almos: since :he bezinning by large hertivores pariculary bison The rumbers of bison huctuated over the mili.ennia; there are also ficcuations in the censity of occupations ard the archaec:escal record probably for the same reason A: Hell Gap. the archaeoiogical complexes follow one arother with few charges from 11.000 :0 8000 years ago afie: that time. a climate charge may have set in. At Mu-m.... Cave. Wyoming, there are 38 cistinct ferile leveis fom 9300 years ago:0 a 2 1580. Indicating intermitten:, perhaps seasonal. oceupations for long periods of ure den. nings 1983). Agricultural activity with dependence on maize in the eastem Plains the Plains Village Tratition appeared berween a D 600 and 1000 in Sou:h Dakcia ared nearby regions. The bison remained imporiant, rot on: as a food source: bison scapulae were used as hoes. Theere were cultualil contacts with the Puebios and with the Caddoan Mississippian, and many villages were forifed
In summary quoling from the Cambridge Enc:ciopedia of Arehaeology (chap. 57, which. alore with Jenrings [:983]. is a good survey of the penced, "al! Norh American agricultural developments were reated his:or:cally and were derived from pnor appeazarces in Centa Mexiso and further south. The societies of the southeast reached the greatest degree of sociai complexity and developmen:
the ceatine of the Olmess. imporant cultures and societies developed in the valley of Mexico (Cuiculico first. then Teotihuacán) and in the valley of Oaxaca (Monte Albán), where major ceremonial centers were buil. In Teotihuacán (200 B C-A.D. 800), the popilatior. in the later period may have been as high as 100,000 for the whole valley of Mexico. most of it in the capital.
The lowlands of Yucatin and Guatemala were occupied by Mayas, who extended also to the highlards in Guatemala. The conditions for agriculture in the Mayan regions were quite similar to those of the Gulf coast where the first urban civilization. that of the Olmecs. had earlier developed. These regions were exce:lent for sedentary, but not intensive, agriculture with two crops of maize a year: Soil fertility, however, is a serious problem: it is not clear how the Mayas solved it, but they may have employed several different solutions to make siash-and-burn farming more efficient (Jennings 1983). Ceremonial centers like Tikal in the Guatemaian lowiands and Kaminaljuyu in the Guatemalan highiands began developing in 30 and 500 B.C. respectively. The Mayan

Fig. 6.E.1 Meso-America fom For... ative Period to European zor:as: (itor O Shea 1980)
culture was strong'y infuenced by Teothuacen. It was a multicentso hierarchical sociest, with each senter having majestic retigious anc ceremonial morumen!s. The major cer!er in the Mayan classical period. Tha!. oczupied an area $0: 60 \mathrm{~km}$ (jenings 1983) and had a population of tens of thousands of people. Outsde the center. the population lived in sma!! hamlets and was more dif. fuse. The classical Masan period ended abruptly about A. $\mathbf{D} 900$ tor unknown reasons.

The abandonmen: ard destruction of Teothuacan stared a competion beweer. Mexican regional ser. ters, in whath the Toliecs. from the city of Tolian near Tula in the centrai Plasez: north of Teotifucan, even-

6.6: DEVELOPMENT IN SOLTH AMERICA

We have already discussed the diffculties associated with the very early dates of some South American sites. Clovis projectiles. indicating the Paleo-Indian Period, are found in most of South America as far south as Patag. onia; in the north. at El Jobo, they may even antedate those found in North America. The beginnings of agriculture can be traced to a period between 9000 and 7000 8.p., mostly in the northern and central Andean region (fig. 6.6.1). There is no single, contained nuclear area. but a wide strip all along the northwestern coast that later radiated to other pars of the continent. By contrast, the tropical forest of the Amazon basin had a somewhat later, secondary, and less marked development, but hints of major novelties are aiready apparent.
There is broad consensus that maize came to the northem Andes from Mexico, along with perhaps squash and beans. but a number of plants were certainly domesti-
trally gained control and became the firs: millats. state of Meso-America. Their influence las:ed tom A. 2 900 :o 1200 ard extenced as far as northem Yuzatan. where Chichen Itza (ended in AD. 122t) became the most imporant center in the so called "Posiclassic penod" (a.D $9(0-1520$). Tula had been destroyec a himie eartier. Powe: fell into the hands of the Attecs, who came from the north to found a city at Tenochititan. where Mexics City is located. They were in power in 1519 when Hemán Corés conquered Mexico. A survey of the period and region with additional references car. be found in chapter 58 of the Cambridge Encyelopedia of Archaeolog:

Fig. 6.6.1 Vi=e of agrivuitural se:teren:s ir. South Areras. The :oss:0n of a modern inbe the Yanomare. is aiso ncicated from Whitenouse and wh:ce:ouse 19:5: BaT: : 980: Ioms 1930:.
is atove jonn m ard ineir domestication may have begur. very eary 8000 s z: Bray 1980)

Asnicuitre pisued onily a seconcany role compared with sorging until about 5000 E.p., but af:er this date large: se:temerts supported by agricuilure began to appear. Sites ike Real Alto and San Pabio. on the Ecuadorian coas: are large stabie preceramic faming villages; for example. El Paraiso had a population of 3000- 1000 (Bray i980). Pottery appeared around 5000 years ago ai sites as diverse as Puerto Hormiga, near Canagena. Colombia. and Valdivia, Ecuador.

Irrigation was practiced early and its sophistication increased to remarkable levels. Terracing of the steep Andean slopes was quite common and greatly improved water control and productivity. Cotton (possibly a local domesticate) and the manufacture of textiles soon acquired considerable imporance. Improvement in trade networks made it possible to redistribute a variety of materials at long distances, and socioeconomic advances allowed people to make excellent use of the variety of microenvironments present in this region. Through ethnic and kin relations, in addition to trade, it became possible to develop the already mentioned pattem of a "vertical" economy whereby the same people had access to products made in very different environments. from the coast 0 the highest altiplanos. In the Andes with a day's walk. it is possible to go from one to another of a number of different ecological niches. By wise al-
liances or other social devices, an "archipeiago" "ype of econcony was created which gave people ard sma'l. communties access to. or ownerstip of, peeses of iane in a gree: tarie:y of areas

Population density musi have risen steacily in inis period, and it is not too surprising that the lica emenere which at the time of conguest extended from souti. em Colombia to south-cen:ral Chile, may have bes: made up of 12 million people. Even if this estirate varies greatly according to sources, the area must :iase been very densely inhabited, perhaps as much as senia. Mexico. Complexity of society probabiy reached a rev. height ascut 3000 years ago, as shown by the nign site at which a new sophisticated art form, that of the Cha: culture (northem Peru), spread over a vast area, withe:: any evidence of political or military occupaticns. Tre Moche site fictures of the north coast of Peru ano B.C-AD 600) show perhaps the first hints of organzed
 Tiakuancco culture. located on the southem rim st Lake Titicaca :,000 B C to a D 1000 . There uas progressive development of ceremonial centers anc tne impena. s.atus was acquired in the las: phases. At the peak, the arban population may have been $20.000<0.000$ yernings 1982). This culture certainly had an impcrant impac: or the central Andes. probabiy initiating or ac anaing economic innovations later adopted by the Incas. Arte: the collapse of the Moche. the Huar: cultwre wo.der Tiahuanaco infuence esiablished. probabiy :hrough rititary concuest (Momis 1980), an empire that lasied una:. A.D 800 . Other states (e.g. Chimú, capital Chan Chan: pertaps 25.000 people) exisied at the time in the centa. Andes. The orly great Sourh American empire siarec developing after 1438 when, near Cuzco.the Inca won a battle against a nearby state. They adopted an extremeiy effective military policy and by building an extensive network of excellent roads (15.000 km) across very difficult terrain. hundreds of road stations and state storehouses, and a well-trained amy, they rapidly concuered an extensive teritory. Called Tawantinsuyu ("Land of the Four Quarters") it was one of the greatest empires of the world. Inca was the name of the hereditary monarch. The nobility, the priests, and the bureaucrats formed 5% 10% of the population. The rest was a rural population on whom several types of taxes were levied, despite the lack of a currency. Of the agricultural products, roughly two parts of three went for the state and the nonproducing part of the population, and the rest was distributed by the village chief among villagers. Textile producis were made by the women for the state. Time in the army and labor for the state were required of the men under the "mit'a" system. which was inherited and periected from eariier states. It made possible very rapid rilitary conquesis and the monumental buildings dedicated to ceremonial and civil purposes for which the Incas are famous. Products taken by the state - food and textiles -
we:e redstioutec t the popuiation aveoreng to rank. ard indiveds. welfare was assured by ar effenent state organzation. The "khipu," a system of knoted strings of obscure ongtr. served the pufoses of communication and accountirg in !ieu of writing
The enomous Inca empire lasted aboli: a century; at the time of sorques: the empire sparred 30° of latiude from near the presen: Equadiv-Calorbia border to south ce-tra! Chile, including much of the A-dean region of Bolivia. It was destroyed by 250 conatistadores led io Peru by Pizato in a. 2153 ? The Spaniards were great:' helpe b_{y} epidemic diseases like smalpox and measies that they irvoluntarily imponed to Peru. and decimated and disorganized the Indiar population. Tie: aiso ably exploited civil unrest.

The remarkable population density ard degree of corplexity and organization of the Andear states and empires were unmathed in the rest of South America. bu: a eiatne derse population developed in the Amazon fores:s in spite of the cifficultes me: by famers in much of this area dew crops were nevessary for the we: soll and cimate of the Amazon: the mosi successful oithen was manioc. This plant exs:s in two varie: es. sweet and bitter, the sweet varie: was procobiy comestianed frsi. The bitter type :equires a speciat fermentation reatment for destroyirg a poisonous substarce tha: generates cyarice Manioc cutings can be easil: plantez and propagation is extremely simpie It is esperia.ty sutabie for ropical enviorments and provides roots rich in starch but poor in proteins. so it mus: be couped with other food. Since manioc seeds are not used it is Effacti to trace it archaeologically: goce clues are vats anc specia! bow is emplosed to make chicha beer from it. or graters. Manioc may have been comesticated at an earlier date farther north. but the earliest well-dased finc is from Yarinacocha on the upper: Leayali River in northem Perd (about $4000-3400$ years ago\%. In the same area and time was also found the first pottery. protabis derived from the Valdivia types. The Ucayali River is a tributary of the Amazon, and it has been suggested that there were close connections between Amazonit and the Andes during the Chavin culture. This would explain the Chavin paintings of tropical animals and plants that do not exist where this culture developed. The finding of pottery on the lower Amazon. and even at the mouth of the river (island of Marajo. Ananatuba culture, for location see fig. 6.6.1; date 980 B.C.) has suggested that cultural adaptations to the tropical environment. developed on the upper Licayali River and other tributaries of the Amazon near the Andes, were spread downstream by colonists. There were also later migrations upstream, as in the case of the Omagua and Cocama tribes of the middle Amazon. At the time of European contact, the Omagua had villages of $300-3000$ inhabitants, at short distances from each other. and the firs visitors were impressed by the quality
of pottery Figh dersities were possibie oriy in areas very favorable for agnculture (vazea i. from whis. -a tives were soon evictec after concues: if they were ro: kiled by disease ot slave raics ($B=-7$: 980

Even today in the Ormoco and Amazon basin there exist tribes that have been relatively uncharged s : European contact. Several of these-in partoular, the Yanomame and the Makiritare - have been the subjes: of intersive ticlogical investigations by .iee: 1978. 1980, Neel et al. 197?) and his group inciuding among many others, population geneticists P. Smouse R. Spiziman and R Ward. linguist E Migliazza and culura! anthropolegist λ. Chagnon. The bibliography is 100 extensive for a comple:e listing. which can be found elsewhere (Chagnon e: al. 1970: Smouse 1982, Chagnon 1983). The Yanomame are tropical gardeners who aiso rely on hunting-gathering activity. Like other hunte:gatherers the: have a low number of biths, because of long birt intervals. Despite their low fertity the: are at the moment in a period of denographic grouth Their present location is shown in figure 6.6.1. Tree history of Yanomame villages shous severa! fssions and fusions. Fissions reflect hostilities beween groups are often take place along kinship lines. Although tenden. tially endogamous. there is migratory exchange between villages of the same tribe and, to a mush lesser extent. with other Incian tribes of the region. There were only two docurtented instances of exchange (.Vee: pers comm) : one was due to the capture of two Naximare women (Chagnon et al. 1970) and the other was due to the absorption of a few surviving members of a trize tha: had come upon hard times (Weitkam? and Chagnon 1968). The genetic exchange between Yanomame vi. lages, in spite of the fusion-fission history, is suffciently limited that there is considerable genetic heterogeneity between villages. as described in detai! in the onginal papers. In partisular, the tendency to fissions following kinship relationships (linea! fission pattern) has the effec: 0 : reducing the effective population size of the village and therefore increases the effect of drift over that expected. assuming random fissions. Further strengthening of random genetic drift is due to the high polygamy of village chiefs. The Yanomame move frequertly, often under pressure of hostile relationships within the tribe and with other tribes, and are curtently drifting slowly southward. They occupied a part of the forest still sufficiently undeveloped at the time of the Neel study that they could keep to their traditional customs, a situation that is rapidly changing now.

The findings in other populations in southem Venezuela or in northem and central Brazil are similar to those of the Yanomame, but there are differences between tribes depending on their economy. Saizano and Callegari-Jacques (1988) have compared groups that they call stage-A tribes (hunters-gatherers with incipien: agriculture, ike the Yanomame, Trio, Cayapo. Xavante.
and oiters：and siage－B tribes iechroiogicslly more ad－ varced asticuluralists and fisheme－ike the Macushi． Wapishara．Ticuna，Makintare．Caingang．and many others．Fermity mumber of chidren in corpie：ed farm－ liest is a lede louer intertibai mariages merer and vari－ ance of the nu－ber of childen higher in stage A ．but otherxise on major demograpnic diferecoes were found It is likeiy tra：the average size of wheses is greater in stage B

Coriemporary but fragmer：ary informaticn from other fcrest people cf the Amazon－Onncco basin shows that mos：are se：ting under pressure from govenments．but the tracitional way of life has been mathaned in a few

6．7．Physical anthropo：Ocy

Physioal anthroplogis：C．S．Coor（i965，cistir－ gushed betueen Eshmos ard Aleuts．or the one side and Amencen lacians on the other．The irs：wo be－ long to ：he Siberian Morgocics and came by a later migraticn：American Indians are stated to be Mongoloid in gereral and more uriform acialiy．＂despite some of their peculiarties in blood groups＂ard are＂more uni－ fom acialty than ary cher grow of people occupyng an equaly bast area．but they are Morgoloids of a par－ ticular kind

The orgin of Morgoloids see chap．- is believed io be eithe：in gorhem China or norih of it．Ascordirg ：c Alexseev（ 1599 ，the maximum cevelopment of Mon－ golod features is found in cer：ral ard southem Siberia． espes：al：among：th the Tungus－Mancinu people of central Siberia．Kamchatika，and the lower part of the Amu：Valle：：（2）Turko－Mongolis people of southern Siberia ard the Yakuts（middle Lera River）；（3）the Nivkhs（ $=$ Gilyak）．a small group in the northern part of Sakhalin and the mainland opposite it：（4）northern Asians like the Nganasan（Taymyr peninsula），Dolgans （a small group south of the Taymyr peninsula）．Yukaghir （a small group east of the Lena River），and western Chuckehis．These people have somewhat variable pig－ mentation in skin and eyes，the lightest being the second group followed by the fourth and then the others．They all have extreme Mongoloid features，mostly reflected in the conformation of the skull and soft parts of the face． which include large cranial and facial dimensions，flat－ tened face，nasal bones，and nasal bridge．It is difficult to give a＂nuciear area，＂especially because the geographic distribution of Siberians has changed considerably in the last three centuries．Although Eskimos and Aleuts have peculiarities of their own．they tend to follow the same general pattem．Like mosi Mongoloids（with the excep－ tion of the Ainu），they have very little，if any，body and facial hair，but abundant and coarse dark hair with rare balding and late．if any，graying．Browridges are small． if any；the eyeballs are wide apar and smaller than in
cases．Noverents and acrix：ures are ro：anここ－mor local econctic develcpren．．espeziad mining，form ing．and soad bulding．are zauses of serious encroanh． ment．Tempotan occupation in soc－mining operticns and ir oi．fee cs very destas：ive 0 ：racniona！Ara zon societies and bodes ：．．．for the future do these pozu－ lations．The extensive destran：or of the fores：folloming the opening of roads and modern agnovitural and ind．s． trial pianis areate dangest tha：go well beyond the heav： damase to the iocal population．s

Surveys relevant to this per：od and additional refer－ ences can be fourd in chapters 59 ard 60 o：the Cam－ bridge Encyciopedia of Arthaeclogy
ron－Morgolods．placed fomard in the crbis：the ese opering is narowed to a stit by eyefolds，with the nne： edge of the eve covered by ihe Mongoitar or epcar． thic eye foid in a percenage of individuals．which is especially high among Siberians．The ：ower－arg：r of the orbit lies farther formatd and the zy gonatic bones frotude forward and lateraly generating the character－ istic＂high cheek－boned＂appearance．The nasa！bridge is usually low and flat．but there are also acuitre noses． with little if any，intermeciate forms．

American Indians have less flat faces thar．Siberiar．s and often prorment，sometmes convex noses．This is perhaps the main difference，but as just mentioned，the American Indian type of nose is also fourci in Asia： Coon（1965）cited the Tibetans and the Nagans of As． sam．Pigmentation is usually darker among Americar． Indians，but there is also variation among Siberians．

The mean stature of American Indians（Johns：cn and Schell 1979）varies considerably，being highes：at high latitudes（Canada and Patagonia）and lowes：in the ：op－ ical forests（Guatemala．Brazil）．This folious the usual pattern of climate adaptation．In South America．mean stature was mapped for 43 tribes（Salzano and Callegari－ Jacques 1988）and there is a slight difference betweer the northwest and the central－southeast（ 157 cm vs． 161.3 cm ）．

Of special interest are the studies of dental character－ istics by Tumer（1987，1989）．Most northern Mongoloids have shovel－shaped incisors，which are also found in fos－ sil skulls as far back as Chinese Homo erectus．This and other cranial peculiarities have been a major reascn for claiming independent speciation of Mongoloids（Coon 1965：see also Wolpoff et al．1984）．The genetic ex－ change at various times and places between local human types．even archaic，and immigrant H ．sapiens sapier：s is a possibility worth considering，but the picture of migrations from Asia to America developed by Tumer． and based essentially on dental clues，is unrelated 10 this question．It is important．however，that on the basis
of this evicence, it was stated that a strong dfference exis:s between East Asians from norher. China and the Southeas: Asian type For instance, northen Mongoloids ("sinocionts" according to Tumer) have 60% 92% shoveling as agains: $13 \%-25 \%$ in solitem Mongoloids "sundadon:s"). Different percentages refer to different populations sampled. Japanese of the Jomon period (chap. 4) show the owest pereen:ages and, together with the Ainu, $t e$ classiffed by dental criteria among the southem Mongoloids, with Thatand MalayJava, and Poiynesia Two other traits showing major differences beween nonher. ard southem Mongoioids are the number of cusps and the number of roots on molars

Tumer's anaiysis is based on the premise that dental characteristics are highly inherited, stable in evolution. and not sensiti.e to evolutionary changes as a function of adaptation to different types of foods. These hypotheses require irdependent confmation. Unquestionably, teeth have the advantse of being readable in fossii samples and perhaps aiso of offeng greater detail than bones. U'sing deria' ricroevolution. Tumer acculated 14 kya as the date of the frs: crossing of the Bering land bricge by the Paleo-Indians. He also postulated that the . .ia-Dene migration was independer: of that of Paleo-Indians and that i: ocsured :-12 x 3 a . just before ine land bridge of Beringia was compiese:y submerged Ir addition. he hypothesized ana the Na-Dene ma: have originated
from the late Dukial culture (fig. 6.2.2) passed aiorg the southern edge of Beringia to Kodiak isiard and theto the . . 0 mwes: coast of the Pacific He also state that the third migration. that of the Esk:mo-Ateus, arrived jus: before the brigge was severec. bu: af:e: the Na-Dene. These conclusions agree well with othe: independent sources of evicence (Greenberg e: a'. 1986 and. apart from dates, with our genetic aralysis tsee 6.9 et seq.).

As we have aready brieny indicated in chape: 2, dental data on northerm Asia, southeast Asia, and the Ame:icas are generaity in excellent agreemert with those from. single genes. How much further back this agreemen: wi... go remains to te seen. The question of how much further back denta: data can take us in human evotution is also a matter of conjecture. Apar from the urinown role of narural selection and of dietetic customs-believed to be negligible by Tumer-and the unknown level of hertability, an imporant consideration is the number of independent genes that can be detected by this approach This is also unknown: only when this number is reai: large are conclusions insensitive to the acittion of fu:ther information. Statements based on dental aralysis are very interestirg but it would be unwise to rely on therm alone urtil more :s knowr about the problems jusi mer. tioned. especially if and when they disagree with other sources of eviderice

6.8. LNCu:S?:Cs

The nor:"rgu:s: who approanhes the field of the classification of Amencan Irdian languages can only be shocked by the segregation of linguits in:0 :wo groups that hold almost diametrically opposed beliefs: one, more numerous. refuses to recognize unity in these languages ard chooses to lis: a large numbe: of essentially unreased small families or isolated languages, the interrelationships among which are considered beyond recognition: the other much smaller group proposes three families, corresponding to the three major migrations that are also recognized by other criteria. namely. in time sequerce. Amerind, Na-Dene, and Eskimo-Aleut. One cannot fail to see this as the most dramatic example of the usual division between "splitters" and "lumpers." which has been observed repeatedly in almost every elassification. be it of living organisms or inanimate objects. To increase the dismay, the group of splitters uses extremely strong language against the author of the unification of Amerind languages, Greenberg (1987) who has eamed enormous respect from the whole linguistic community for all his other work. The diatribe has been the subject of articles of popular science (two rather extensive summaries by P. Ross in Scientific American and R. Wright in Allantic appeared in April 1991). Another summary
of the dispuse is in a Pos:script to the 199: exition a: Ruhlen (1987).
Ruhler: (1987 and references there:n) summanzes the history of ciassification of Amerind languages. dividirg it into three phases. The first was stared by the famous anthropologist Alfred Kroeber (1876-1960), who at the beginning of the century collaborated with R. Dixon to reduce the number of families of North American lar. guages by combining some previously recognized taxonomic units. Edward Sapir carried this effor further. and in 1929 the number of North American families was six, two of which were Eskimo-Aleut and Na -Dene, the languages of the Pacific Northwest. This began a second phase, which san be called a "revolt," and the dismemberment of Sapir's families; after a 1976 conference, the number of independent units of North American lariguages was back to 63 . The list of the results published in 1979 was stated to be "conservative and not very controversial" representing "current received opinion." The third phase was opened by the linguist J. Greenberg, who made the claim that there exist only three families: Eskimo-Aleut, Na -Dene, and Amerind (1987). The Amerind family includes most North American languages and all Central and South American languages.
for which :-are had freviously been oriy limited aralysis. For South Amerioz. in partazar. the information was a lis: of languages or language siusters rather than a true zasstication.
The exect meaning of the word "famb" (for which. some prefer "phyum" or "s:ocr", need not concem us here; it usual. efers to the highest "generic" grouging recognized. Linguisis use the more gerenc to mean "common. descent" similar to "phylogerest" for genericists. Today some linguisis have staned forming "superfamilies" from the conventional sarilies, hence some of the families are no longe: ite highest genetic unit

Norlinguists, like the authors of ine present book. ©annot make a contribution to a discussion based on linguis. tic argumen:s. From a general scientifs point of view. the methocological anaiysis found in the recent book Langiage u: ite Anericos by Greenberg (1987) is convircing. We accep: Greentere's work as a very serious attemp: at a comprenensive classifatach. which has already achieved some imporar: resuits by distinguishing the same thae major groups fourd from iotaiy independent scurces. Ever. if this classifistion charges in the furure : supplies a staning goin: ha: is not pro. viced by the extreme': frgmenary dassifations suppored by other authors. As Greenzerg's book convincingly shoms, the diffolties encountered oy the extreme spiners are methocolosioal. They proceed by comparing :wo languages at a time with al exameiy detailed anaiysis that makes it impossible to tesi more than a smai! iacion of all possible pairs. Their conclusion is limited :o :he saterrer: that the pair is eithe: "relatec" or "not related." omi:ing an estimate of a degree of relationship. without which is is impossible to build a classification that goes bevond the recognition of saatered relationships. The desision on relatedness is based on extremeiy rigorous criesia. with which. accordirg :o Greenberg it would be impossible to recognize even the unity of the Indo-European family, a step backward by unjversal consensus. One of these criteria is the belief that "sound correspondences" (rules of change of sounds established on the basis of historical examples) must be followed without exception. Greenberg uses a method of multilateral comparisons, in which many languages are compared for a number of words and other criteria selected for their evolutionary stability. We limit our treatment in the rest of this section to summarizing Greenberg's classification, as given by Ruhlen (1987).

We refer to the three families suggested by Greenberg, called phyla by Ruhlen, as families and to their subdivisions as subfamilies. The geographic distribution of the various subfamilies is shown in figures 6.8.1. A and B.

The Eskimo-Aleut family comprises 10 languages and 85,000 speakers; Aleut is presently spoken by 700 people in the Aleutian islands. Three Eskimo languages are spoken by 600 inhabitants of the USSR. The Asian Eskimo
languages betong to the Yuph suzgroup foun promand is southmester. Aiasha. The Escion intrg of the A. tic coas: of Nont. America and Greeriand speak :hee languages: Alaskan Invi:. Canstion Inv: and Coeranai Inwi: These are ofter consicere : thee segments of a dialect chatn strething fom norte-t Aiask :c Green: and

The Na-Deve family is spoker in nornideser. NorAmenca and consists of two languages. Haca ta speakers of a total 2000 Hada , living on Queer Char. lorte and Vancouver islands! and Thingit aCGO spezeres of Tingit. out of 10.000 living on the coast noren of the Haidal as well as the Athabasian subformily made a of 30 languages. The Athabaskar languages are sfonen by a norhern group of some 00.000 speakers in easem Alaska and all of western Canada. a few (mos:y ex: : $:=$: groups in Califomia and Oregor. and a souther. groue of about 130.000 speakers the Apache and Navajo

The AyER!ND family contains $58:$ arguzges, sponen by 18 milion speakers. They are subdnded by Geen.
 6.8 .1 .

1. Vomen Amerind includes as suziamies Anocian

Keresicuan. Penutien, and hickar.
A. 1. Ainiosan zonsisis of Kuera: a single larguase A. A. zic A!gencuian and :wo sobese langsages. W:0:0.0 ’urck: and Mosan Wekashon. Sal:sn, ard Ch-akuar. it colets mos: of Canada solth of the zores ocuplee Ey Eskimos the Arctic) ond the Na-Dene northestem Canada and central Alaska: It aiso exiends :a the Mowest south of the Great Lakes anci :o Vew Englare
A. : Keresionan incluces Keres lessentially a shace larguage) and the Siouan. Iroqucian, and Caddoan :ar-. thes: it soless the rest of the Mouest ainos: to the Ariantic coast
B. Pemuiton is a northem group inciuding much c: Oresor and California. with outliess (Tsimshian) as far north as Canada: in southeastem Norh America. a Culi grodp includes the Muskogean family and a few :so ated :arguages: in . .ew Mexico. Zuni; a southem group is found in Mexico (Huava, Mixe-Zoque. Totonasan, and the Maya in Yucatón and Guatemala).
C. Hokon is a northem group with small clusters in nothem and southem California, Baja Califomia, and pzts of Arizona; a southem group in nonheastem Mexico and Texas.
II. Central Amerind includes three distinct subfamilies.

Tanoan, Uio-Aztecan, and Oto-Manguean
A. Tanoon includes Tewa (Arizona and New Mexico) and Kiowa (Oklahoma).
B. L'to-Aztecan is in most of the Southwest. including the Hopi and Pima groups.
C. Oro-Manguean is found in southem Mexico. especially the southwest; also includes the Zaporecan. Chirantecan, Mixtecan, and Mazatecan.
III. Chibchan-Poesan includes the Chibchan and Paezan families
A. Chibchan languages are found on the southwestem coast of Mexico and in almost all of Central Amerca

Fig. 6.8.1 Geographic distribution of linguistic families and subfamilies in (A) North America and (B) South America (Ruhlen 1987).
south of the Yucatinn; other clusters in Venezuela and Brazil include the Yanomame.
B. The Paezan languages formerly found in northem Florida (one inguage, now extinct). now survive only in South America along the coast of Colombia and Ecuador and farther down in the Chilean Andes: there are also splinter groups in the Brazilan forest and on the norinem coast of Soutl America.
iV. The 20 Andean langugges. of the 583 Amerind tanguages. account for half of the Amerind population because of the great diffusion of Quechua and Aymara in
the central Andes. The Inca empire, and perhaps also the Spanish influence, were responsible for the spread, which is therefore recent. There are also a large number of speakers in the southem Andes, including the Mapuche ($=$ Araucanians). Three small areas in the northerr. Andes also speak. or spoke. Andean languages.
V. Equatorial-Tucanoan includes the Equatorial and the Macro-Tucanoan subfamilies.
A. Macro-Tucanoan is found in nine geographic clusters, mostly in westem Brazil, with a few in eastern Brazil.

> B. Eatcorici has the greatest numter 25% of all Amerind languages and is wicesored fom wes: :o east and fecm the Caribbear siands :o Lroguvy, in Verezueia. Colombia. Euador, Feri. and cental and easeem Eraz: The large rumber of larguages is due :o the inclusen of :wo imporari suatemilies, Amakanand T.ア゙Suan!
> VI. Ge.Paro-Car:o includes Macro-Ge. Macio-Panoan, and Mazo-Carib
> A. Mere-Ge was ven wiespread Dut oniy a few languages survive mostly in southem Brazil. in the high. lancs ard farther south. The Kangang language beicrigs to :his sroup.
> B. Macro-Panoon once extended from. Perd to Uruguay: mary languages are now extinc:

6．9．Phy Locenetic analysis of America

Botr arit．opological and Dirguistic evicence points ：o three mator groups that may have represented distinci migraticrs．ail focm Norheas：As：a The Paleo－Indians were the Arst，thoush ther cate of ert？is ancertain be－ tween 35 and 15 kya．Trere soeater consensus for later dates．but erough unceranty that an earlier one must be enteraree as a possibibity．The northestem American indians ：cennfed by the family of languages they speak as Na－Dere，were nex：，as incicared also by their remain－ ing in a more northem area．The Eskimo－Aleut were the lates．．and rhabit oniy the extreme northen region both． in A．terisa and Asia．The presence of some Eskimos in Asia is be：ieved to be a retrogression from the Americas to Asia．rather than ar aborginal Asian population．The date of entry of the last two groups is probably 15－10 kya．

The question of whether the three migrations can be distingushed on the basis of biological characteristics has recently received some tentative answers，all ba－ sically positive．In addition to Tumer＇s（1987，1989） dental analysis discussed in section 6．7，there is a study of Arctic populations by Szathmary（1981；see also 1985），who used data from 14 genetic loci and found the Athapascan（Na－Dene）are more similar to Eskimos and Chukehi than to northern Algonquians（non－Na－ Dene North American Indians）．Williams et al．（1985） collected GM and KM data from the Apache and Navajo （southem Na－Dene），and the Pima，Papago，Hopi，and Walapai（non－Na－Dene from the North American South－ west）and showed that these two groups differ geneti－ cally．The difference，however，is not striking and con－ clusions based on a single genetic system，even one as informative as $G M$ ，are unsatisfactory．In a more sys－ tematic analysis based on data from a larger number of genes and populations，Zegura（Greenberg et al．1986） tentatively recognized the three migrations，but acknow！－

> C. Macro-Corib ianguzes were spoker :ne ron-me-m gions of South Amerca, nocsty on the cons: at Cair-. bia. Venezue:a, the Guanas anc roorem Enal u. outliers farther south.

Geographically，Almosan and Keresicuan are Gone only in Sorth America：Penutian．Hokan．and Cen－ tral Amerind are founc in ．Vorth and Cer：ra，A－menca Paezan，Chibchan，and Equatorial in Centrai and Sani： America：and Andean．Macro－Tucanoan，Macro－Care Macro－Panoan，and Macro－Ge oniy in Souin Amenea An important point is that the geographic cistra－ticn oi Amerind languages is extremely fragmentary espesia．．． in Scuth America．
edged the existerce of dificultes for dranion frat corciusions
In our pape：（Cavalli－Siorza e：a！．i9as），which sum－ marizes some of the poir：is made in chapte：2，a！the Na－Dene were collected in one group and the rest of the American continent was divided into Vorm，Cen－ tral，and South America．The Certral group was detine on a linguistic basis，taking the Cer：ral Amerise sub－ family，which is aciually parly ir Norn amerias and does not include all people from Central Ameris．In that analysis，Eskimos clustered with Chukeh．and with． Turkic－speaking populations of northem Asia，forming a small subcluster of the Northeast Asian cluster，while al： American Natives including ．．ia－Dene formed a separate． major subcluster of Norheas：Asia．Na－Dene speakers． however，include two major groups，northen and south－ em．The southem Na－Dene are essentially the Apache and Navajo．Although the exact time of their migration from Canada is not known，it was probably late，and they are believed to have arrived in the Southwes：around a． 2 1200．Until recently，there was a splinter Apache grotp in Kansas．

In the analysis of this section，the major criterion for grouping populations is linguistic．In view of the special linguistic interest，we also added Chukchi ard Koriak in order to test possible similarities with Eski－ mos．Within a few linguistic groups，in particular the Na －Dene，we use a furher subdivision on the basis of geography．Because subfamilies are dispersed in wide！ different areas，it would be especially interesting to dis－ tinguish subareas in other subfamilies；but unfortunately． even after the pooling of individual tribes into linguistic groups，there are not enough data to form as many geo－ graphic subgroups as would be desirable．Eliminating groups because they take unexpected positions would of course be unacceptable．The procedure adopted was ：0
eliminate systemat aaliy groups or subgroups that had fewer makkers．Here as in other chapters，we have tried to iitil gafs to not more than 50% in the cata matrix． Populations for which there were clear signs of admix． ture with eithe：Caucasoic or African people，accord－ ing ：o the achors who collected the genetic data，were eliminated．We though：it useless to carry out a direct analusis of ad－mix：ure considering that exteme drift in many American Native groups has generated exceptiona！ gene－frequency variation．There is no assurance for any of the mos：infomative markers，even some $R H$ alleles． that they were truy absent in the original American Na－ tives and car therefore be used for inferring admixture We are reassured by the results of another study that the possible Caucasoid or Africar admixrure of some data we used is not misleading：Salzano and Callegari－ Jacques（ 1958 ）used 17 non－RH alleles potentially use－ ful for evaluatng the proporion of non－Indian genes and compared them，with results using RH alleles，which migh：be bet：er matkers of acmixture．There was a cor－ rela：ion，but it was doubtful whether the estimates of admixture sosed be considered quartiatively vaid．Of 58 tribes oni： 5 had estimated admixtures of over 25% ； 11 berween $: 0 \%$ and 25% ．Trees from populations be． lievec ：o tave less than $10 \sigma_{c}$ acmixiure gave results very simiar to those obtained using the general se：．As to our own da：a，we find there is a clear effect of admix－ ture ony in Norti America as shown by synthetic maps isec．6．13

The groups for which the number of markers was corsidered adeguate are lisied below，logether with the names of the major tribes that fomed them．In almost ever．case．however there were some other，less well－ investigated tribes that are rot named below but are listed in the ：abuiations：data from the tabulations were used to calvulate the mean gene frequencies of each group． In this way i：was possible to increase the representa－ tiveness of the data，at least for those genes for which data are more abundant．Such genes．because they are represented in more groups，inevitably have a more im－ portant infuence on the final conclusions than genes more rarely investigated．Restricting the analysis exclu－ sively to these genes．however，would have reduced its power．

In the list belou，the tribes that are named are those that have supplied the most important part of the in－ formation，having been tested for more traits．We repeat here that，especially in the Americas，and not only in the southem part，there was enormous drift in many popu－ lations．generating great variation from one population to another．This is clearly visible，for instance，in the geographic maps of principal components（Suarez et al． 1985）．The avera，ing over populations can help reduce the effects of drift of individual populations，as alre：dy explained in chapter 2 ．

Figure 6．8．1 show the geographic distribution of the linguistic groups．and able 6．9．：the F_{5} genetic dis－ tances among groups．The 23 ：ribes or groups that con． tributed most to the genetio data used in the analysis are listed beiou，with the three－leter symiod used in ：he tabie．
1．Eskinic－Aleit
A．Eskimos：L．S．A．other than Inu：EUS：L．S．A．Inu： （EIC）Canadian Inui：（ECA）：Greeniard Inc：EGR）
B．Aleuts ion＇：U．S．A．：USSR Aleuts had to0 fer marees and rended to associate with Asian popuiatior．s：
II． N_{A}－Deve
A．Northern Na－Dene（non－Aㄴabassani：Haica．Ting： iNDN：
B．Canadian Na－Dene（Athabascan）：Dogrit，Siave． Chipewy an（NDA）
C．Southem Na－Dene（Athabascan）：Apache．Navajo III．Amerind（NDS）

A．Vorthern Amerind
1．Almosan（NAL）：Blackfoot．Cree Makah．Mon－ tagnais．Mismac－Penobscots，Naskapi，Nootka． Ojibwa．Salish－Mukleshoot－Flathead－Quinau＇： －Okanagan
2．Keresiouan（NKE）：Cadcoan Caddo－Wichita－ Pawnee）．Cherokee
3．Nortn Penu：ian：Seminole＝Muskogee Zun：
4．South Penutian：Eastem Maya Ixil．Kek＝hi． Caxchiquel，Kiche），Maya．Totonaca．Tzei：alan （Tzelial－Toztil）．Yucatecan
Note tha：Penutian were tested jointiy（PEN；and Hickar were eliminated because of strong admixure
B．Centrai Amerind（CAN）：Chiapanesa．Choluteza．
ㄱahua．Papago．Pima．Tarahumara．Zapoleca
C．Chibchan－Paezan
1．Chibchan（MCC）：Guaymi．Ica．Misumalpan（Paya． Lenca．Miskito．Sumo）．Rama．Talamanca（Cabeca： Bribn，Boruca．Teribe，San Blas），Tarasean．Tunebo， Yanomame
2．Paez（MCS）：A：acameno（ $=$ Kunza）．Cayapa （Ecuador）．Choco，Colorado．Voanama，Paez，Waza
D．Andean（SAN）：Alacaluf，Aymara，Mapuche．Ingano
（Colombian Quechua），Quechua

E．Equatorial－Tucanoan

1．Equatorial（SEQ）：Arawakan（Goajiro，Arawak，Pa－ raujano），Baniwa，Bari．Campa（Maipuran），Chane． Chipaya，Emerillon，Guayaki，Jivaroan（Jivaro， Aguaruna．Yaruro．Cofan．Shuara），Maue．Oyampi． Pacas Novas（Chapacuna）．Palikur，Parakana，Piaroa． Piro．Siriono，Wapishana，Zamucoan（Ayore，Imoro． Chamacoco）
2．Macro－Tucanoan（SMT）：Siona，Ticuna，others F．Ge－Pano－Carib

1．Macro－Carib（SMC）：Carib，Galibi，Macushi，Maki－ ritare（ $=$ Yecuana），Panare，Pemon，Trio．Wayana． Yupa（ $=$ Northem Motilon）
2．Macro－Panoan（SMP）：Cashinahus．Choroti，Chulupi． Lengua，Mataco，Shipibo．Toba
3．Macro－Ge（SMG）：Caingang，Cayapo，Caho，Xa－ vante

Table 6.9.1. Genelic Distances (in the lower lell triangle) and Their Standard Errors (in the uppor right trianole) of Amorican Tribos. Grouped Mostly Linguistically (all values \times 10,000)

	PEN	CAN	CKC	CKO	CKA	ECA	EGA	EIN	EUS	ESH	MC.C	MCS	N()A	NITN	NII:	NAI.	NKE	SAN	SEO	SMC	SMG	SMP	SMT
PEN	0	76	181	280	209	234	300	329	224	178	92	70	110	171	50	104	139	40	37	39	90	128	115
CAN	199	0	259	386	246	139	320	265	245	207	85	138	133	124	413	79	39	60	71	88	126	115	126
CKC	896	968	0	170	537	229	198	359	244	84	265	250	313	$3 \mathrm{G6}$	178	16.5	257	228	180	241	184	281	247
CKO	1241	1367	335	0	678	294	264	627	518	210	413	293	495	480	269	276	333	364	259	362	241	405	326
CKA	1202	1051	900	1414	0	150	376	290	105	201	340	337	325	213	223	193	310	2:4	308	207	221	312	308
ECA	956	769	658	1070	621	0	86	56	69	66	216	231	191	128	231	15	193	267	197	226	245	25.7	195
EGf	1286	1152	682	1232	1067	302		84	69	156	296	405	314	189	345	247	333	357	298	214	411	307	258
EIN	1438	1211	1370	2015	1494	326	270	0	95	183	404	460	119	300	245	200	318	363	324	360	409	457	288
EUS	1033	977	562	1227	496	259	330	417	0	141	320	360	106	121	210	167	217	263	259	359	28.5	329	311
ESA	978	1002	246	680	583	407	677	799	351	${ }^{0}$	364	385	241	190	238	151	289	289	291	304	237	370	347
MCC	436	359	1389	1871	1732	1267	1312	1548	1372	1669	0	105	211	362	117	208	92	103	55	79	134	81	161
MCS	334	451	1462	1857	1851	1454	1638	2129	1743	1708	488	0	311	531	123	116	68	125	143	96	189	98	288
NDA	744	734	1178	1587	1267	519	1054	492	631	930	1106	1742	0	63	142	111	116	126	129	191	172	213	206
NDN	744	589	1136	1516	1236	645	690	872	505	716	1265	i995	371	0	89	217	289	263	327	401	196	480	451
NDS	256	240	756	1019	892	836	1220	1051	719	787	560	655	426	425	0	52	102	73	68	81	144	145	149
NAL	335	419	618	963	950	367	831	814	669	704	731	634	483	736	217	\bigcirc	100	167	101	100	111	92	141
NKE	257	146	1002	1136	1406	873	987	1263	703	899	401	237	70.7	719	319	295	0	41	61	97	153	94	116
SAN	168	280	1151	1586	1437	1144	1387	$13 / 4$	1367	1335	304	508	965	1094	359	417	204	\bigcirc	60	62	110	41	140
SEQ	195	230	1089	1522	1673	1072	1293	1450	1292	1437	264	352	906	1109	415	461	219	335	0	17	93	85	87
SMC	174	275	1208	1661	1471	1133	1109	1652	1390	1399	291	340	1061	1193	354	457	300	296	98	0	133	95	137
SMG	381	525.	1118	1489	1449	1242	1722	1940	1268	1157	543	578	1118	1054	671	565	524	484	387	496	0	170	197
SMP	505	494	1430	1839	1878	1372	1362	1697	1460	1683	303	393	1037	1410	680	384	403	270	341	410	650		220
SMT	524	540	1429	1926	1910	1073	1179	1329	1676	1724	606	739	1075	1234	773	690	468	514	380	495	81		0

 Eskimos: MCC. Cenliel Macro-Chitchan; MCS, South Macio-Chitchan, NDA, Canadian Na-Dene. NON. North Na-Dene; NDS, South Na. Uene: NAL, Almosan, NKE. Koreslouan SAN. Andean, St O.

USSA Eskimos had too law markers and were not used in the lee of figute 6.9 1, thay tond to associalo wilh Chukchit

Fig．6．9．1 Genetit ：ree oi 2
American thes groupe aroading
to linguistic an：us：3

The tree obtained or the linguisti＝groups fomed from subzamilles of North．Central ani South Amenca
 Data incude groups with ar averge number of $-2.8=$ 6.8 genes The PC Tap acsourts sor 5arc of the original genetic varatur．
The gene：i：tree shows a very clear separation be iweer Esnimo－Alest and Chukihi－Koryak norheas：－ ert Sizeria specking rinn－a－merian languages；on one side．and ai ameran Incians other thar．Eskimos on the other The Na－Dere separate irto two groups，the most norhem joining the Eskimu and Chuksh cluster and the southen ones the Amerind ciuste：These con－
ciusions are ir agreement with those reached by siodu： the matix of genetic distances．The average dis：ance c ： southem Na－Dene to the two northem Na－Dere gro－es is $0.0+26$ ，and that be：ween the two norher－Na－Dene groups（Canadian and U．S．A．）is 0.0377 （c：terence no： significanti；but the northem and souther．Na－Dene show a erage dis：ances of 0.0693 and 0.095^{-7} from the Ejk－ mos．Table 6.9 .2 shows the distances between the rorin－ em Na－Dene and southen Na－Dene on the one siee．and the fow mos：：ypias！Norhern Amerine groups on the other．

It is clear from the above distances tha：the Apache－ Navajo，forming the southern Na－Dene．must have hat

Fig．6．9．2 Principal－componen：mas of Americ．an tribes grouped by linguistic subfamilies．

Tathe 5．9．2．Senetr distances（x：C，300）among Northem or Southern Na．Sene and Other American Natues from Normern and Cental Amerca

	N．Na－Sene	S．Na－Dene
Aimosan：	609	217
Kerescuan	712	319
Northen Feruian	739	266
Noth Centa monnncian	6 E2	240

consiceable admixture with norher Amerinds．It is also possiole that the northern Na－Dene have had some admix：ure with northem Amerinds，but the data are in－ sufficient to show it．

This observation can also explain why in our earlier world tree chap．2）a group made by averaging nort． em and southem Na－Dene tended to join the Amerincs． saturg irm them，however，at an apparently very eariy time．We know tha：mixtures tend ：o attach to an over－ age linkage tree at a higher level than the actual time at which the mixture occurred．The atachment of Na－ Dere ：o other Amerinds indicates that the component in the mixure due ：o the latter is．on the average．strong enough tha：it outweighs an orginal．unknoun．compo－ near responstble for the difference between Amerind and Na－Dene

The Ave Eskimo groups are reasonably ciusteret in the tree，with Asiatic Eskimos showing grea：＝simitar－ ity unit：their zlose geographic neighoors，the Chukchi． than：with the American Eskimos．USSR Eskimos are a very small group and the separation sufficiently long that ：his result is not surprising．Furhemore，there are linguistic connections between the Chukchi and Eskimo larguages，strergthening the case for a relatively recent commor origin of the Eskimo and Chukchi．

Boctstrapping shows that the separation of the two major clusters is clear－cut．

Of 50 bootstraps， 19 show the identical first split of the tree of figure 6．9．2．This may seem a low proportion， but in the cther 31 bootstraps，deviations from the tree of figure 6.9 .1 are almost always minor．

In 14 bootstraps，the main change is the addition to the Arctic group of the southem Na－Dene；given the strong similarity berween the southern Na －Dene and the north－ em ．ia－Dene this is not surprising．In 6 of these 14 bootstraps also，the Almosan follow the southern Na － Dene in joining the Arctic cluster．Because Almosan is the Amerind group geographically closest to the Eskimo and northem Na－Dene，the potential for admixture is not negligible

In 17 bootstraps，one or two populations leave the Arctic cluster；they are， 11 times of 17 ，the pair of northern Na －Dene and Canadian Na－Dene，which almost always stay together and join the southem Na－Dene in the Amerind cluster．In the other 6 cases．Chukchi or the

Reirdee：Chukch．or more rare：y the USSR Esinos joir the Amerind cluster．

Even though the LSSR Eshitios are tocis：－a：e ：－．．． ilar genetioaty to the Chukchi thar to the dire：Esi－
 The simiamities with Almosan seem modes：anc the a mixure was probably not a major one on ha－wo－wit the ertionial and ecolcgical segregaticn of Eski－cs

The similarty of nomhem and southem iv－Dere anc： their other associations are aiso dearly visible ：r ithe fre：－ de：ails of the bootstrap betavior．The group tomed a： Haida．Thingit．and a few Athabascans on the ccas：is fairly similar genetical！y to the Canadian Arnatas：an． and they almost never part．Southem Na－Dene srow their affinity with the nornert Na－Dene，but the：have an even greater affinity with Aimosan，which mane：esis itself in pairing with Almosan in 25 of 50 boc：s：－iss． while they pair with one or the other or foth no－r．． em ． A －Dene in 13 of 50 bootstraps：they shou an－．os： no tendency to pair with ary othe sirgle peaworer． This ndicates that the admixure of Nava－Apothe nit． Ametincs probably happened mostly in earlie：：mes in Canada betore the move south

The Amerind clusie：has an in：emal surciuse of sever Norh．Central，and South American sutiomiles Two pairs of sutfamilies，one cer：－al．scuthem and the cthe：northem are next：Ge and Tuearoan ase the ou：－ bers

As mentioned more than once before an culle：in a tree has several possible explanaticns．Assu－ming that evolutionary rates are constant，one can trust the tree structure to correspond to the orde：of separation of branches．and thus probably to the order of the：mi－ gration away from the place or places of orig：n Wher． an oullier is a very small population that developed in a highly isolated area．the assumption of consiart evolu－ tionary rates is difficult to accept，as one would expect it to show a long branch because of high drif．In this case it seems more likely that outliers did not separate particularly early，but being of small size had a very high． evolutionary rate because of extreme drift．

In order to avoid the consequences of extreme drift for individual small tribes，we have grouped them．in this case，according to linguistic subfamilies．If linguis－ tic families are formed of groups with greater internal genetic similarity than randomly formed clusters，the pooling of tribes in linguistic groups can help reduce the effects of extreme drift．Although we did not know whether averaging by linguistic family would be truly useful，we attempted it nonetheless．We are currently not aware of better altematives．

If drift of individual tribes is very high，one may need to average many tribes to obtain a substantial reduc－ tion of variation．This has no always been possible here because of a lack of adequate data．In fact，the two worst
outhers：Mas：o－Ge ard Maseo－Tucanoan are made up of only four and ：wo popuiators respectiely More－ over the rumber of individua：s in these thees is sma！！． The Ge are mosty represented by the Caingang 7000 in Brazi：Cayago $a^{-C O}$ in Brazil and Xavante 3000 in Brazi：：The Tasano are represented \because ：the Ticuna． who nurber $2^{\prime}, 000$ in Brazil．Perd and Colombia com－ bined Each oca，pooulaion is likely to be a small frastion of the cora for the tite and to have limle o： no contas：with other splinters of the tribe located in other，ofien disian：．regions．These outhes are there－ fore likely ：o be cases of very high onit．The nex： South American outlier．Macro－Panoan．is represented by seven tribes．with numbers of individuais compara－ ble to those above：Central Chibchan－Paezan is repre－ sented by 10 tribes．It seems that the greater the number of aibes，the less extreme is the position of the family in the tree．This suppors the idea that crif is impor－ tant in this case．imener evidence that high crift is involved somes from gecgraphis multivariate maps． and from other data to be given in later sections． which show extrone difierences betueer geographic neighbors．

A thici possibie expianation for outhers is an agglom－ erative origi－．wh contrbutions from mary groups be－ longing ：c very diferen：sources．In urban sivilizations． this is oitar coserved ir capitals that have resenved immi－ grants foom wicei different regions They show，there－ fore aterit whe many other regions withou foming cose pairs with ary paricular one．This expianaton can be extiuced in the present case for fores：populations like the Ce ana ine Tueano，who live（at leas：tocsy） a：a low econorna leve in isolated areas．The safest general conslusion from the tree as we ciscuss later． is that，athough the major fissions of the tree are ir good agreement with information from other sources．it seems difficult to reconsinuct a reasonable genetic his－ tory from it as far as ：he Amerinds of South America are concerned We see in more detail in section 6.11 that this sonclusion is correct．This does not necessar－ ily mean that grouping by linguistic families leads to wrong corciusions．but simply that it was not adequate to improve on a difficult situation．

The PC map（ing．6．9．2）is more useful，at least in showing the effert of geography：the first axis sepa－ rates the Arctic populations at the right，puts all north－ em Amerinds in the center，and the central and southem Amerinds at the extreme left．It is thus in good agree－ ment with basic geography．Arctic，norhern Amerinds cluster neatly．whereas southern Amerinds show three major clusters：Tucanoan，Central Chibchan．Panoan： Carib．Equatoriai．Andean；southerm Penutian，southern Chibchan，and Ge ．These results differ somewhat from those obtained with the tree，but they are based on two dimensions only．

Ai this pornt，we car ask the most imponant guesticn． does the proposed three－migration theory agree uith the results of genetic analysis？The answer is seeary pos． itive．The tho major clusters of the tree Arctic and Amerinc．ccucd cerainly be interpreted as separate mi－ grations anc the Arctic cluster does contain a seconda－： split into Na－Dene and Eskimo，the orner ：wo postuared migrat：ons．Thus，the tree is compatible with the thee－ migrations theory of Greenberg et al．（1987）as is the PC map．The analysis may also support the idea that the two late：migrations．Na－Dene and Eskimo，had a related or：－ gin in Northeast Asia．in the sense of having come $t r o m$ a common enthic group in that region．The separation of the Eskimo－Chukchi－norhern Na－Dere cluster from． the Amerind slusser is also visible in the first princi－ pal component of the PC map．The separation of north－ em Na－Dene from Eskimos is also seen in the seiond component，though not as clearly．The Na－Dene and Es－ kimo may have migrated independent＇y to America．or they may have separated in Beringia or even in Alaska it is impossitie to solve this problem with the presen： data．

The question of dating these major rigrations may be reconsidered again here．In our 1988 faper（Cavaini－ Sforza et a！．1988），the divergence between al．Amerinds and all northem Mongoloids is in slightly better agree－ ment with the firs：date of entry proposed．about 35 kya．than with the second．Using the constant cal－ culated in table 2．5．1 we obtain here the date of 31 kyu．However，northem Mongolonds are a very di－ verse population，which underwent considerable ir． temal movemen：in the last three centuries（Alexees． pers．comm．）．With mixtures and other complications． the divergence berween the average Siberian and the average Amerind is likely to be greate：than the di－ vergence of Amerinds and their direct Asian ances－ tors．It is also likely that some of the Siberian popu－ lations that remained in Siberia were exposed to more severe environmental conditions and decreased in size． undergoing even greater drift．In any case．our attempts at identifying one Siberian group closer to Amerinds have not been successful．On the basis of relatively few markers（ 6 loci）．Spitsyn（1985）found that among all Siberian peoples，the Tungus．Even，and Yakut located in the northern part of central Siberia are genetically clos－ est to the Athabaskan．The Asian ancestors of Amerinds may have come from a relatively small region，and their Asian descendants may now be diluted by admixture with other less closely related ones，to the point that they are no longer easily recognizable．It is also possi－ ble that the majority of the Asian ancestry of the Amer－ ican pioneers has effectively left Asia，as happened，for instance，for Eskimos．All these considerations，and the expectation of high drift in regions of very low iensity like Siberia，would tend to increase the distance between

Siberans and Amernans and thus lead to an orerest mate of the tme of passage. One may aiso consider that these are dates of separation. presurabily on the Asian mainard. ari the date of passage may be later. There are severa $=$ anses of uncerain:y and a dating based on the civerser:e of Amerind from norhen Mongolous canot ye: be given comple:e confience. but we are clear: within the range sugges:ed ty arthaeology

From the tree in figure 69 :. the gene:ic separadion berween \because a-Dene arc Esximo is a lime more than halfway between the separation of the Artic group and the Aremind group. If the first is taken as representing the separaton between Amerircs ard Norheas: Asians.
fo: which :ue have a not compiete'y conivang essmade (31 kya) disoussed acove, then the dote of searation betweer. Na-Dene and Eskimo. probably sta.. in Asia. is about 18 kya . . . c e that this is not necessarity a dae : entry to America of one the cther. or bcth separato may precede entry, which may be late: but pethaps iot by a iarge amount

The tribes were groupec in this sect:cn according: a lingustic criteron. nodifed io some exien: by a gez graptio one. In the nex: section we consider the trizes that are better known genethai.\% meperdent of the 'inguistic grouping used in this secion, for North and Scul? America

6.10. PH: o OENET:C AnAL: S:S OF NDIVIDUAL TRIBES

The :ribes :ested for the grea:est rumber of genes in cur dia fies are here irdidua..y aralyzed. Considering frsi Nort and Centra, Amet:: we have the genetic :ree in figure 5.10.!. based on a sampe of it populaticns win an average rumber of $62.7=5.5$ markers Table 5.10.: stows the $F_{5 T}$ gene:ic distances. Cree and Naskapl. what are very similar linguston'ib (Voegelin ard loezo in ! 9^{-7}). were pooled; even after pooling. the reman the g. up wit fewest gones.

The Aictic tiuste: has the same structure as beiore. with norhem Na-Dene Athotasean and Dogriby connes:ec : Eskito. but separating from them in the frst spli:: USSR Eskimos are :he mosi penphera of the Eskirto siusier

In Gouse 6.:0.2 the same geretic ca:a are presented as a PC map which acsounts for 59% of the original geretic variation. The clusters indicated are linguistic groups and are discussed further in the next section.

The analysis was repeated for 30 populations from South and Central Amenca, including Central Ameri-
can lirgustic groups because of the exiensie ingustio smilarites be:ueen some of ther. The reses of the araivsis are shown in figure 5.103 distances are siver in :abie 6.10.2. The average number of matiers was $614=5.7$

Difficult probiems arise in the ir:erpreatich of th:s tree. The PC map from the same data roo guenj does not bring ary cianitation. . .o simple gecerafhic or linguistic cortelation is 6ound at first sight. a fact to be discussed further. The amount of genetic crit: that has been going on for 10 ky has not abated even oday given :nat population densities in most of the area are still very small and mav even have become smalle: in some cases. There has clearly been an extensive geographic movement of inbes. as shown by, among other things. the fragmentation of the linguistic map, and also by modem ethnological observations. There also mus: have been in the past, and there cenainly is at presert. a complex network of genetic exchanges within and between :ribes. which has been studied in detall only for

C 10
Fig. 6.10.1 Genetic tree of 1 ? single :ribes or geographic groups of tribes from Norh and Central America

NS: MSG Guaym: NCD, Dogrt, NAI, Athabascan, NNA, Navajo; ACN, Cieo, Naskapl, Monlaguais:

AO. Opbua, KCH. Chorukeg. PZU. Zuni. PME. Eastern Mara

Fig. 6.10.2 Principal-component map o: Norhere and Centra Amend tribes or geographic groups. The chusters refe: :o linguistic groupings: 1. Esk:mo: 2. Northe--Na-Dene: 3. Southern Na-Dene: 4. Almosa-. 5. Central Amernc: 5. Penutian: 7. Keres:cua3. Chibchan

Two tribes (Yaromame, Makiziare). These investigations are the only ones from which a model can be derived. One wonders how much one can generalize the conclusions reached for these examples. but it is encouraging to have excellent data ever for only a few populations, which have not been seriousiy affected by contact with latecomers, or at least have shown little if any tendency to acculturation. The Yaromame may have originated at a considerable distance from their present location in the uppe: Orinoco (see fig. 6.6.1), probabiy in Parama on the basis of linguistic considera-
tions: They are still moving and exparding Chageor. 19831. The sicry that emerges from the Yancmane 0 Naximitare is one of many sceramos which mus: exist in South America. It cerainiy should not be ex. tended to regions with a long risiony of formaticn of couns or cities or even villages having a cota". ferent demographic and mating structure. Rather. :te Yanomane are a model for populations livirg as par-. itive horiculturists in the American tropical Erest, which is a signifieant fraction of Central anc Solsth America

Fig. 6.10.3 Tree based on genetic distances of 30 South and Central or near-Ceniral American Indian tribes.

Table 6. 10.2. Genetic fistances (in the lowat left triangle of the matix) and Their Slandard Errors (in the upper right triangle of the matrix) among Central and South American Tribes all values $\times 10.000$)

	ANN	ANP	AM	MCA	MW\%	MCY	MSG	PTU	PME	MM	Mr	AMA	$10 \cup$	EAR	EBA	EEM	Ef	EMA	EOr	EPN	EPR	EPI	men	max	MTR	MWA	MYU	MGC	Max	Mrt
											17	247	90	4	176	212	70	125	140	307	320	121	30	142	220	50	115	∞	124	154
ANN	0	42	36	148	220	217	276	4	161				14	123	218	218	250	212	120	547	201	292	108	192	135	05	176	144	14	23
ANP	174	0	31	207	310	118	100	40	08	323	204	200	1	123	216	218	130	154	∞	402	320	To	211	106	187	110	138	178	141	178
API	100	104	0	174	297	160	180	50	154	343	213	103	70	152	127	28	130	124	220	220	341	6	220	185	224	132	208	288	109	237
mCA	478	600	440	0	244	420	426	106	210	360	41	184	SO	105	321	326	33	509	26	501	03	415	250	241	387	230	310	105	456	406
mwn	800	1180	1033	,	0	316	057	250	316	438	146	436	211	228	236	245	33	N	106	403	404	300	175	325	27	202	260	348	732	230
mey	009	021	101	430	1368	0	236	121	204	120	261	252	27	333	21919	258	180	100	157	261	173	344	142	335	207	302	540	340	484	309
msO	114	103	105	1341	1520	106	0	110	189	660	102	5	201	33	301	375	157	115	100	407	228	223	161	182	109	11	20	18	307	146
Pru	234	210	100)	550	1000	564	504	0	60	328	155	\%	54	0						247	248	13	D0	101	11	131	173	180	12	167
PME	278	347	317	505	1003	040	611	260	0	203	267	33	40	11	10	250	195	403	553	16	471	285	334	613	192	130	321	300	289	373
AAM	006	1306	1404	1212	1947	2001	20	1100	027	${ }^{0}$	343	283	300	400	401	44	175	183	205	422	306	220	170	178	261	133	246	180	443	162
May	414	500	400	100	510	810	44	469	116	1153	0	5	40	138	253	21	175	155	203	374	423	110	141	224	942	403	450	504	151	25
AMA	804		10	2	1422	1160	11	551	406	446	33	0	4	500	45	370	123	155	200	358	255	${ }^{3}$	135	148	102	07	156	150	141	218
a	320	303	200	3	1045	041	116	0	50	10	62	66	0	112	105	280	18	26	115	267	60\%	20	02	218	111	109	224	09	164	353
f An	100	450	546	5	531	BS4	021	590	15	1209	013	1309	305	\bigcirc	152	271	18	125	235	304	611	251	157	272	373	310	148	205	221	280
f.bn	545	-	471	1041	70	4	00	504	60\%	14	002	1381	OS5	392	${ }^{\circ}$	358	162	ISs	235	44	540	65	250	204	262	230	333	202	211	317
tfm	034	1281	1	1515	635	361	80	1146	1113	49	1261	173	1240	132	1202	0	4.3	131	110	103	215	11	62	56	172	100	190	141	400	148
[月	244	650	320	285	1120	010	513	525	102	614	525	450	206	400	5.3	1280	9	137	201	244	200	140	128	165	136	217	170	343	310	0
tMA	320	852	93	430	1163	012	970	452	468	615	700	602	5.13	870	750	1401	4	09	0	209	300	227	100	103	140	114	225	4	113	408
for	500	sos	518	1071	-07	903	621	604	54	1853	1061	1221	552	410	080	BS 4	405	005	25	200	625	164	239	105	265	10	16	54	850	421
EPN	610	1308	1284	13	23	1649	1400	1308	770	3	1405	1064	1050	814	1310	1735	0		125	219	0	343	230	205	150	30	400	624	350	327
EPA	1188	1146	1408	1554	044	004	131	1315	000	9	1703	\%	1350	163	227	2311	1550	13	184	3		-	116	138	100	185	347	176	261	178
$\mathrm{EPM}^{(1)}$	160	054	43)	42	1681.	1500	1185	110	351	600	682	16	39	1112	1002	1738	210	681	45	\%		5	0	71	140	140	150	192	471	74
MMA	${ }^{2}$	635	304	058	005	40	507	637	17	12	625	${ }^{415}$	356	447	423	1047	311	417	849	023	1605	460	303	0	0	105	236	102	536	304
Mmх	635	126	70	-50	11	12	000	054	459	201	022	1024	522	502	1326	1045	311	¢ 76	116	1020	650	612	470	602	0	120	275	230	418	220
min	45	cm 2	687	100	1241	(0)	1010	500	248	762	on	1045	42	431	1004	101	500	505	353	.	1320	753	112	497	200	0	108	111	443	331
MWA	223	458	505	0	160	135	1026	548	432	5	547	1108	305	328	020	161	505	000	353	131	1643	1009	S00	1267	700	624	0	131	22	260
mru	460	767	601	1106	1040	150	060	713	550	107	033	1115	762	348	455	1111	5×6	1152	025	73	2105	200	7ee	685	727	211	437	0	350	470
mGC	203	654	813	915	12	128	1126	001	621	709	021	1534	149	320	012	607	406	1152		1490		150	1002	1050	1144	13	ess	705	0	552
max	204	501	657	602	1281	1625	26	000	281	008	1021	145	404	501	12	015	0,	240	1572	1201		127	300	1287	43	1050	1043	1371	1311	0
MIt	674	824	16	53	2051	1000	125	005	025	13	001	925	020	1052	601	1602	301	240	1312											

Fig．6．10．f Hision of tisi：e and tuscos oi seven IUarr tare rilages over $60: \%-7$ Ha－c and Neel 1970 ．in The phyogenevt ree Eanc asec irom geneic simia：：es be：ween villages car．to sere exien．reconsinust the atius hisiory of fissions ibu：－ol ：h．3： of fisions which weuid demenc oher approashes The shang：rg temがa．－ipata relaticaships are ：－ざここ！es ：－ recerese ：o the are sune $\%$
the leti，heacings at the ：ce represent the six tanger－ g．aprica：areas．

The hasory of fissions and fusions for the last few geremar．i of the Makintare ise fig 6．10．t shows a stacture of very small groups．or the crder of 100 indi－ vicuals each．which split and reurice，to some extent ac－ corcirg ：c kinship lines．Kirship groups，however，are not necessarity stable entities uhen viewed over sev－ eral geneations，and the urole picture is one of incom－ plete rancomness of splits and fusions that is not easy to model quantitatively．The genetic variation between villages is about twice what would be expected（Wag－ ene：1973）on the basis of the observed proportions of migration，assuming that migrants are a random sample of the population．Thus，drift is higher than expected from the observed migration and population size，prob－ ably because splits and perhaps reunions tend to follow kinship lines and are therefore not random（Smouse et al． 1981；Smouse 1982），as in regular models of population structure．

Another source of amplification of drift effects is strong differential fertility，especially of head men（Neel and Weiss：975；Neel 1980）．The Makintare are largely endogamous within the village，and even more within the tribe，but give and receive nontrivial genetic con－ tributions to and from neighboring tribes．usually of different linguistic groups since several tribes moved a long distance from their origin．One cannot exclude the possibility that immigrants from other tribes have closer kinship ties with the tribe，decreasing the out－ breeding effect caused by mating with members of other
tribes．Considering the frecuency with what usmer．are raided from other tribes，a serain amount ct andom． or rearly rancorn outbreedirg with neighoors mus：aiso occur．

There is only limited information on other inter－wbal migration．According to a summary of infomation by Salzano and Callegan－Jacques（1988）．genetic exchange is considerable，and it is higher for tribes at a more ad－ vanced economic levei．Their tabulation does not dis－ tinguish between genetic exchange with neighoors and with different tribes．In unpuolished daia collec：ed with H．Groot and A．Espinel in Colombia，genetic exchanges between different tribes on the upper Orinoco became very high at the end of a long period of intenribal hos－ tilities：in a small area investigated near Puero Inirida，it was difficult to find marriages where there had not been recent admixture between different tribes．The memory of genetic exchanges in older generations is frequen：ly lost，and such findings make one suspicious about the real isolation of many South American tribes，at least to－ day．Yet，there is enough genetic variation between South American tribes that some degree of isolation must have been maintained in many instances for a long time（Neel and Ward 1970）．Our capacity to understand the genetic structure of southern Amerindian tribes can only benefit greatly by an extension of studies like those already cited by the Neel group，before they are made totally impos－ sible by the disruption and disappearance of raditional customs．

6．11．COMPARISON OF GENETICS WITH LINGLISTICS AND GEOGRAP：Y

In section 6.9 we have seen that genetic ana！shis fuity confins the division of American natives ：ato three ma－ jor cius：ers．Amernds Na－Dene and Eskmos．Which are also cleariy distinc：linguistically The hypothesis that they correspord to three major miratinns，a！．from Siberia via the Berng region，is in agreement with cur－ rent archaeological knowlecze．desplte present uncer－ tainties on dates The gerera：picture seems reasonably weli established and further analysis given in section 6． 10 has clanfied possible doubts ansing from the am． biguous position of the southem Na－Dene．Their geo－ graphic position and the peculiar genetic relationships with othe：Na－Dene and with Amerinds are best ex－ pained by admixtures with the later that mus have ac－ companied their southem migration．When we come to consider Amerinds，we find greater aftaxtes in fully reconciling gereti data with information provided b： other approacres．In part．this is caused of the povery of intormation．At this paint however．we must summa－ nze iwo previous investigations that show a a mout doub： tha：Amerinds too．provide good eviderce of a strong correlation between genetics and languge

The frosi is 2 －ex：ensive aralysis of the relations beween the gere：o．linsus：e and cultur：similar－ ities of 5 ：Norh Ameriaan Indian tribes samied out t！Spuhie：lis 99：The onalysis used a subse：of 13 oene frecuensies from ABO，MN．RH：Diego blood group was tested ont：for a subse：Of seven linguistic groups：Arc：a－S＝erian．Ma－Dene，Mac：o－Agonquian． Macro－Sicuan．Hokan．Penutian．and Az：es－Tanoan．3： （ $6-2 \sigma_{6}$ ；of 53 tribes resed were classiñed correctly using gene frequencies．This indicates a substar：ial agreemen：between linguistic anc：genetic data．but also a number of discrepancies Must misciassifications in the Spuhier sample are found among Na－Dene．Macro－ Algonguian and Wacro－Siouan，and in the Hokan group． In Spuhler＇s analysis by culture areas（Arctic．Sub－ arctic，Northwest Coast．Plateau，Califomia，Plains． Southwest．Northeast．Southeast） 31 of 53 tribes were correctly classified．or 58.5% ．Considering that more groups were testec in the latter case，the two approaches gave approximately equivalent results．In conclusion． there is substantial，even if imperfect，agreement be－ tween genetic and linguistic or cultural classifications． Some of the discrepancies．especially that of northem and southem Na －Dene are of interest；note．however． that Apache and Navajo are not misclassified in Spuh－ ler＇s analysis．The statistical approach used by Spuhler （stepwise discriminant analysis）is different from the usual one of calcalating correlations between genetic and linguistic（sometimes also with geographic）dis－ tances．Moreover．we use more genes and fewer tribes．

In figure 6．IC．2，tribes belonging to the same hagunio group are circled．There cleat＇y is a reascrabie thoush no：periect，agreemen：be：ween a inguis：．and a gene：i classification．The small numbers do ro：pe－mit a com． pletely satistastory assessment of the coreiation．The in－ comple：e agreemert indicates that the estimates of ge－ netic and lingusio similanties mas nees improvemen： It may also result from frequent language or geretic re． placements．In fact．these explanatiors are not mutua＇．＇： exclusive，and to some extent，all may have cor：－ributed ：o reduce the correlation without completely destroyng it

Using other more conventional approaches．Spuhie： （1972）found no evidence of corelatior between gere：： and linguistic distance．This negative resuit may be more of ar ircictment of the method than of the gereral correlation between linguistics and genetics．A linear correla：ion can easily be des：roved by some outliers． The expectation of linearity may be nave when there ：s a complex fission and fusion patem；simulations may be appropriate 5 ：a comparison of the different methocolo－ ges．Fowever．Spuhler（1972）reanalyzed the same da：a by an analysis of vatiance，which esazes the strictures of linear－sorreition analysis，and found tha：the vatiaree of genetic dis：ances among linguistic stocis is signin． cantly higher than that within linguistic stocis This is in line with his result by discriminant analysis．It is wort adding that Spuhler found a moderate but signifionat correlation between genetic and geographic cistances and none between linguistic and geographic disiances

Apart from Spuhler＇s studies of the gene：ic－iirguistic correlation or the North American continer：．there have been many investigations of limited regions or groups of Central and South America An early one by Spielman et al．（197－）compared the linguistic distances among seven Yanomami dialects and genetic distances among the people occupying the corresponding geographic ar－ eas．The matrices of genetic distance，disiance calculated from lexica：data，and from grammatical data showed in all three cases a significant congruence．

Chakraborty et al．（1976）found no linear correla－ tion between genetic distances and linguistic distances in seven Chilean＂highland＂Andean populations．Lin． guistic distances were calculated on a scale based on an early classification by Greenberg．The scale of linguistic distance used may be responsible for the failure．

The same measurement of linguistic distance was used by Murillo et al．（1975）to compare linguistic and ge－ netic distances of the Chipaya of Bolivia to nine Sou：h Àmerican Indian tribes．They found no cortelation．

Salzano et al．（1977）investigated the intra－and inter－ tribal genetic variation within the Ge－speaking Xavante． Kraho，and Cayapo of Brazil．They conclude that the
average intertribal genetic distance within this linguistic group is about 635 as great as that between tribes speaking more differentiated languages. They found however. a weak linear correlation ($r=0.27$) beiween genetic distances and cognate percentages in a list of 100 words.

A very thorough and detailed siudy has been published recently by Bararies et al. (i990) on the Chibchanspeaking groups of Cosia Ricz and Panama. Ten such poptlations were analyzed for 48 genetic loci. The genetic distances between pairs of populations were correlated ic the linguis:ic distances based on cognate percentages. The observed correlation ($r=0.74$) is high and nighly significant, higher than that observed for genetic and geographic distances ($r=0.49$, not significantly different from zero) and for geogrophy and linguistics ($r=0.5$? significant at $P=0.05$).

When we lock at figure 6.10.3. we are urable to find a simple interpretation linking gene:ics and linguistics in the whoie of Central and South America. A similar failure is experienced in the related tree given for South Amenca in Salzano and Callegar-Jaccues (1988). It seems likely hat, in these circumstance, a tree is highly inappropriate for detecting the cortelation of interest, bu: it is also possitie that the data are inadecuate
Even the usually strong relation between genetic and geographic dis:arce is blurred in South Amenca. The correlation calcuiated between the two distances is $0.191=$ 0.048 (s:andard ertor calculated by bootsirap). It is positive but low, and confirms the resuits obtained by piotting the genetic distance between population pairs against their geograftic distance (sec. 2.9). Linguistic distance between families showed a negative correlation with genetic distance $(-0.139=0.051)$ and with geographic distance $(-0.212=0.051$). These results (Minch and Cavali-Sforza, unpubi.) will need further investigations.

There are many reasons why the correlation of linguistics with genetics and also with geography is especially difficult to study in South America. Part of the problem is tied to the major territorial, economic, and political changes that have taken and are taking place in South America. causing an epidemic of language extinctions that must have been especially dramatic in the last cenrury and earlier. For instance, in Ruhien's (1987) list, 71 languages of the $117(61 \%)$ that form the Ge-Pano-Carib subfamily are extinct. Similar high percentages apply to many other subfamilies of South and Central America: Equatorial $67 / 145$ (45%), Tucanoan 12/47 (26%), Andean $12 / 18$ (67%). Chibchan $25 / 43$ (58%).
Languages often become extinct when population numbers become too small, or when there is government pressure to expand those of another language, but this does not mean that the people also disappear. In fact, it seems reasonable to asjume that in the modern siruation, with the continuous shrinking of groups, an increasingly larger proportion of people stop speaking the traditional inguage and replace it, either with lan-
guages irnpored iy the solcriat powers or uith Tore widely spoker, raciaonai languages from othe srofi This would eetainy cor:-itute :o the destruation ot the correlation of languges and zenes. There Tre be cthe: imporar: reasors tha: deserie more researd.

One shcud remember that, as we have a'read: discussed (sec 2. Gi. American Nathes show an extreme: high gecgraphic mobility, as measured by the rela:ocs. ship between genetic disiance and geograph: distar:e Mobility is also dereated by sivcying the cistributicn at language sroups, which is extemely fragmertec. with subfamilies icming very complex, interpeneratrog pa:tems. This might be enough to destroy linear cored. tions between geographic and linguistic distances. and between genetic and linguistic disiances. The ecolos:cal situation also contributes to this result: the Arcear: chain forms the backbone of the continent and :s very different from the east. It rurs from the extreme non: : 0 the extreme south and is relatively simiar ecologioa:? in spite of the great bariation ir latitude. It is ocupled by people uto are also relatinely homogeneous gere::cally. as well as lirguismolly: only two major sut:ar:lies of the nine spoken in the whole subcontnen: ocsur in the Andear chain today. By contrast, the flat:er. eas:en par is more heterogeneous genetically and lirguistically. Linear correiations are especially unsuitabie for measuring the association among geographic. geretiz. and lingustic cistances in this case. Detailed s:udie: of single linguistic groups that have not undergone 100 many disruftions and extinctions - for example. the Chibchan (Bartantes e: al. 1990;-are best suited for showing the comelation between genetic and linguistic variation. Studies of other groups. tha: have nor been excessively impoverished by extinctions may also be usefu:

The studies of correlation between genetics and linguistics in America can give only a very parial answer to the genera. problem. Of the seven studies we have :isted. only one that used linear correlation gave satisfactor: results. One can see many reasons why this can happen even if there is a general congruence between the two phenomena. Other methods have given positive results when linear correlation failed. Moreover, even if this is generally overlooked, significant testing of linear correlations between distances calculated between pairs of populations is unsatisfactory because there is usually an intemal correlation between the pairs. This does not apply to the sample by Murillo et al. (1977) in which the pairs of populations are independent. For further comments see Cavalli-Sforza et al. 1992.

In summary, three of seven studies favor the hypothesis of congruence between genetics and linguistics but for methodological. theoretical, and historical reasons. one may expect this type of analysis to fail in the Americas, especially using linear correlations. Further work on American data with more refined methods is clearly necessary.

6．12．Geograjhic maps of sincle geves

The ABO system is remarkably differen：in America from othe：parts of the world：Amerinds are unigue in having almost corpisese＇y los：the A and B alieles．$B y$ contrast．A is conserved among lia－Dene and show a remarkably hig：frequency amorg sore Almosar． whereas among Eskimos．the A and B frecuencies are much more similar to those of the rest of the world． Thus，the $A B O$ locus is a fairly good．though not a per－ fect mirror．of the three major postulated migrations．

The reasons for the loss of one or two alieles of this system，which are present at relatively constant frequen－ cies in all other world populations－and to some extent also in many Primates（Socha and Ruffié 1983）－are no： entirely understood．The extent to which ardom vari－ ation in gene frequencies affected Amerind populations will be clear from several other examples in this section and suggests tha：genetic drifi played a very important role in Amenca．Dic drift determine the ireguianties of gene frequencies in Amenca because of a very low rum－ ber of iricia：migran：s（an initial founder effect），or later borlenecks．and perhaps persistence of low numbers for lorg periods？We may anticipate that the behavior of $H L+$ loc：incicares that the second or thit hypothesis may be the，and tha：many tribes originated from a ver． small number of founders．Insteac of the mar：alieles of an HLA locus commonly founc else where even in small populations．a particular Amerind tribe has only a few alleles at a disproportionate：y high frequency，with other alleles rare or absent．In another tribe the same rarity of most alleles excep：a few is obse－ved．but the frequent aleie＇s are different．This remarkable pheromenon is therefore unikely to be due to natural selection．given its magnitude，or to the initial founder effes：of a small number of frst migrants from Asia．ABO has far fewer alleles than HLA，but in a way there is a somewhat sim－ ilar phenomenon：an excess of A in a few groups，and an excess of O（up to 100% ）in all the others．A high frequency of B is almost never found．

Even if there is a good chance that drift was respon－ sible，at least in par，for the anomalous distribution of $A B O$ ，it is difficult，if not impossible，to exclude the effects of natural selection．As we have seen in section 2．10，ABO phenotypes（or genotypes）react differentially to many infectious diseases，and a popular explanation for the loss of A and B alleles among Amerinds is differ－ ential sensitivity to syphilis，becouse O individuals are more resistant．The origin of the hypothesis is the belief that syphilis was endemic in Central America in the fifteenth centu．y and was spread to Europe by the crew of Christopher Columbus after their retum to Spain． The evidence from direct studies of patients（Mourant e： al．1983）showed that O individuals heal more rapidly （as judged on the basis of immunological tests）after
treatment with chemotherapeutics The da：es ard zeoc－ raphy of the European epidemic begnnitg show，atee： the return．of Columbus＇crew correspond to the expec－ tations of the hypomes：s，but others have ciamed that the disease originated in Africa from a closely rela：ed spirochete responsible for yaws，a nonvererea disease （McNe：ll 1976）．A search for a core anor betweer yaws and $A B O$ was negaure（Cavall－Sfora ： 9800 ．，
The geographic distribution of the $A B O$ alleies show：－ in the maps deserve some comments．Because of the rarity of A and B ，and the omnipresence of O ，all gene－ frequency cistributions are very skew．In North Ame－－ ica O is lower．with allele A being high and reachirg a peax aoove 45%（almost all $A 1$ ）in westem Canada． Elsewhere．O is almost never less than 50 F ．In the ex－ treme south，there is a small patch with a maximum o： A greater than 10% ，and a corresponding trough in 0 Greenland is also high in $A(A)$ ．

In Eskimos．B shows a peak in eastem and soumer． Canada．where O is low and there are also traces of A

Apar：frore Eskimos，the simultaneous presence of A and B in proporions of $4: 1$ is a strorg indication． 0 ： admix：ure with Caucasoids．This is likely to be the case on the easten soast of $C=n a d$ ，but the absence of B in the westem part of Canada．despite the high frequeres o： A．is proof that this is not due to adrix：ure．It Negooics were the donors of $A B O$ genes，which is not the zase ：－ Canadz，the proportion of A to B would be lowe：than：to： white adrixture．We have tried to avoid usirg data from mixed populations but we will see that in the eas：ert part of the United States and Canada a fair number of mixed groups are present．More intensive contacts with Europeans occurred in this area and．therefore．it is ro： surprising that it is difficult to find＂full－blood＂（or even only 3／4 blood）Amerinds．

Variograms of $A B O$ alleles have long initia！linear seg－ ments．with rather small slopes．

Acid phosphatase $(A C P / * B)$ shows an almost regular gradient from north to south．The distribution is almos： bimodal，reflecting the major difference of Eskimos and Amerinds from the extreme north versus the rest of the continent．The variogram is approximately linear up to 4000 miles．with a fairly large slope．
Adenylate kinase $/(\dot{A} K I)$ is，like $A B O$ ，a marker of Caucasoid admixture．The less frequent allele．$A K I * 2$ has a frequency of about 5% among Europeans and is essentially absent in other populations．The band of low AKl＊l（＜97\％）across the North American continent in－ dicates Caucasoid admixture．It confirms and extends the observations with $A B O$ ．The variogram is uninformative and is not reported．

The Diego blood group $(D / * A)$ is of special sig． nificance in America．It was first found in Amerincs．
in whach. as the map shous, the A allele varies from less than $5 \varepsilon_{c}$ to more than $35 c_{c}$, it is also found in some norter. Morgocicis but at a iower fequency. It must therefore -3 a e originated in Norheas: Asia lis considerable varaven in A.merica is mosi prebably due to drift. The ma - - - in norhem Brazil. but it is rare or absent in Nort America. The initia slope of the variogam is Early hast. and the linear portion is iess than 1000 …es

The Duft blood grope (FY uries considerably with alle:e A stowing a maximum in the Arctic. The distribution spans almost the complete range. but is concentrated between 40% and 100%. Allele B has been studied much less extensive'y: it peaks with more than 40% areguency between northem Brazil ard the Guiaras. The varisaz..io of allele A is fairly regular. whereas that of B has a stongly negatue initial slope

Alee : of esterase D ESD. shous a maximum in Mato Grosso southem Brazil and the Paraguay basin. as well as in Certral America: it also show an absolute minimum in:.ies eneme eastem pat of Brazi. The vanogran has a large siope and is imear arth about 1500 miles

G!yox lase-i alele: (GLO:=) has a maximum in Cenisi America ard jow values in South America: the reguar deerease towate the norh is anffactual and caused b: the near absence of data in lornt. America except in the exteme north. The variogram is approximately ares for almost 2000 miles with a largish slope.
The grou-spesific compenent or hamin-D-bincing proteir a'i.e: $l(G C * l)$ shows a minimum in centra: Braz:! ard a relative maximum farther west: the variogram is iregular. possibly because of the closeness of the mitimum and maximum. The electrophoretically fast subtype of GC $=1, G C=1 F$ has two peaks on the westem coast of South America. a relative minimum in the extreme scuith and one in the extreme north. The variogram shows a complex form.
Haptog obin ($H P * I$) also has a very wide distribution, with gene frequencies ranging from 0% to 100%, with a mean of 55%. The peak is in the extreme south, but there are other secondary peaks in South America: the lowes: values are in the extreme north. Basically, there is a north-south gradient. which, in the present case, cannot be attributed to climate. The variogram has a relatively shor initial portion with a positive slope.

Antigens specified by HLA genes have revealed an unusuaily narrow range of alleles, especially in South America (Black et al. 1980). Only HLAA*2, A*9, A*28. $A * 30, A * 31, A * 33, H L A B * 5, B=15, B * 16, B * 17, B * 27$. $B * 35$, and $B * 40$ have average frequencies significantly different from zero. This restricted range of polymorphism is expected when the genetic diversity of an ancestral population has been reduced several times by passage through size botlenecks.

A possible effect of selection should also be considered for $H L A$: in fact, evidence for heterosis in South

Americar. Indians had beer ad.ocu:ed by Bane an: Salzano 198: , who fowe that in a subporuaten a 122 peop'e whose parents HiLt hapicupes were known there were 56 c fewer hon:az gotes than evaesed It in: phenomeron ts due to differenal moranat an an be es ficiently stedied only in the few popuations sti. subee: to hagh preeeprocuctive morali:?
 average-and it reaches maxima over $50 \sigma_{c}$ in souhnes:em No-th Amerna and in Verezuela, wh minima in the norhem Andes and in easterm Greerlard. The distribution is likely : o have at least two modes. HLA-ixg has an averge frequency around $31 \sigma_{c}$ with a peak over 800_{c} in eastern Greenland and the norhwestem Arate. A sesondary peak (over 50%) is fourd in the northem Andes. whereas the rest of South America has frequencies beion 20%. The distribution seems birodal. Alese $A=15$ has an average of $17.5{ }^{\circ} \mathrm{c}$ and a peak of more thar a 0 or in northen Chile, with lou freguencies north ci Coornsia With ar average frequency of : $0 r_{c}$. $A \times 28$ has a peak rea: 40% in the exteme south. Alerging on'y 18.4×3 has a peak of more than $+r_{c}$ in the souneastern. Lrated States. A subtype of $A / 4, A \times 3 /$ a aroges $: 5 \%$, reash. ing more than torr in norhem Argentina Agan, the distribution seems bimocal. Although it has a mavimum.
 erages 1.8%.

With ar average frequency of 12% ard a peak ouer 50% in eastem Venezuela. $H L A B=5$ has a seacrdary peaix in eastem Greenland. Although its mean frequency is $1 \%, B=7$ reaches values above 10% in the wes:ern aretic Ocean region. Allele $B \times 14$. with a 0.88_{r} average. has a frequency greater than 10% in the southem Andes: and $B * 15$. average 11.5%, has a peak in nor.hem Chile. $B * 16$. a erage 13%, has a peak in the nori-central Ar.des greater than 50% and minor peaks e!sewhere. $B=21$. averaging 1.5%, has a maximum above 10% in the extreme Southwes: of the United States. B*22. with mean 0.7%, reaches more than 10% among ceniral Eskimos. Well known for its strong association with ankylosing spondylitis, $B * 27$ has an average frequency of 3.3%. with a maximum above 20% in Alaska. It is interesting to note that the three tribes of the Southwest. the Pima, Papago and Zuni, have similar origins but signif.cantly different frequencies for $B * 27$. The most frequent B allele. $B * 35$, has a 20% average and reaches about 70% in Brazil. With a mean frequency near 19%. $B * 40$ reaches over 50% among Eskimos of the western Canadian Arctic.
In sum. HLA shows great variation, most probably resulting from drift, like the other genetic systems, but as already noted. its multiallelic structure renders variation more evident. This genetic systen: is ordinarily represented by a great number of alleles in almost every population-even if very small-ir. the Old World. and all alleles tend to have relacively
bow irecueroses. In the Americas, the situator is citferent ore or few alieles become defin:ely dominant in frequeri: in one or a few inbes, sometmes reaching values above soct and the other alleles are correspording!y are: but most populations are unique in that the dominan: alleles differ from one io the other, sometimes even in neighboring populations. This is exactly what would be experied. at leasi qualitatively, under drif: alone. In fac:, in the cotal absence of cross-migration, drf: would eventually leac to the survival of only one allele in each fopuiation. The survivirg a!lele is chosen zandoriy from among those originally present, subject to the rule that the probability of an allele becoming the sole fina! survivor equals the initial frequency of that alleie in the driftirg population. Perhaps most alleles were represented at the besinning in Norheast Asia; mary are still present in some. but not in a!! the other tribes
Some alleles weee probably losi. a few among the founders pertaps but mos: in the process of evolution of incividua wizes as shown by the very differen: local pattems of each alieie. It seems as is mos: local populations were stared by suth smail numbers of individuals that the: could on'l mantain two or thre alleles at high frequenc: Lrder these conditions. one does no: need to posiviate a ver sirong founder effec: at :he passage fror. Siberia to Anerica (or even earlie-). The remarkable vararion a-org the Indar tribes of South Amenca suggests the exis:ence of a later bottleneck. perhaps more imponan: thar the frst, if there was a firs: one. In other words. rare: alleles may have been present at the beginning and ios: ia:e. Only 1^{7} alleles have stificiently high averge freguences :o generate maps of America: this is ayou: half the nu-Tber of European alleies, but one does no: need to conclude that half of the alleles were lost. It is possible that there exist severa! underected alleles. because the masority of reagents are of Caucasoid origin and co no: nesessarily detect all alleles present in other popuatiors

The variation with distance shows here, as in other HLA data, severa! negative or fat initial slopes: 5 of 17. The initial linear segments of those with positive slopes are in the usual range, and the initial linea: portion may scmetimes span 2000 miles.

GM (or IGHGIG3) also shows considerable local variation. The most common haplorype, za:g, varies from 40% to 100%, with several peaks and several minima. The next most important haplotype. zar;g, has a maximum in the center of Souch America and decreases almost regularly around it
All the other GM haplotypes have lower average frequencies, but all show usually single, sometimes extreme peaks in different regions. Thus za;bOb1b3b4b5, a Negroid haplotype (very poorly represented in the maps for reasons of reagent availability), has an average frequency near 2%. but peaks at more than 6% in the Guianas

Where there is prooabie Afrot ac-rixure An Oriena: haplotype, $a: b 0 \leq: b 3 b=$. has an average frecuency of 6% and peaks at more tran 20% in Alaska and in Labrain: With an average of 1.6%, fa, b0blb3b-bs has varous peaks in the north and south, rone too pronounced \therefore Caucasoid hap orype, f:600lb3b4b5. has an average fre. quercy o: $2 . \%$ ard peaks in Greeniard and an the nornem par: of South America

At firs:, one might be reluctant 10 believe tha: al. these maxima and mimima for GM haplorype frequencies are due to drif:. One might hypothesize that this immunoglobu'in marker reacts to loca: infectious ciseases, and there is a little evidence for it as ciscussed earlier. However. drift is expected to operate with the same intensity for all markers. It is therefore ikely tha: many GM gene-frequency peaks or troughs in America are due to drift.

Thelightimmunoglobulinconstantchain, $K M *(1 \& /, 2)$. has a mean of 37%, with a wide distibution of 09 :o 80%, minima in the north, bu: at leas: one in the south. and maxima arourd Panama.

The varicgrams of immunoglobulins tend to be ireg:lar and uninfoma:ive. The Kell biood group ($K E L * K$ is a rare polymorphism almost homogeneously near zero $K E L * J s a$ is also relatively rare (2% average) , but shows a peak above 20% on the northem coas: of South America. The Kicd group ($J K * A$) has a distribution of ore to 80%, with minima in the extreme south and in the Panama region. and various maxima. Its compiemer. tary aliele. $J K * B$ is poorly studied directly, it shows a complementary maximum in Panama. The Lewis blocd group $L E * L e$ also vanies greatly, from 10% to 100%. ard has a maximur. in Alaska. LE Le Le $a-1$ has a maximur. in a neighborirg region. but has a much smaller range of variation. Almost all these biood groups have iregular variograms.

The MNS system shows somewhat less variation than other genes. judging by $F_{S T}$ values, but the range of gene frequencies is not small. The M allele varies from 30% to 100%, and the S allele from 0% more than 80%; both frequency distributions are probably unimodal, but both geographic maps are full of relative minima and maxima that span almost the whole range. Of the four haplotypes, only the rarest. N s (6% average frequency), does not have a distribution extending from nearly 0% to nearly 100%; maxima and minima appear in regions already showing strong drift for other alleles, like the north-central Andes or the Arctic, or in new ones, like the coast of southern Brazil. All the variograms have positive initial increases with regular slopes, but with oscillations, except for $N s$ which is fairly flat.

The P / blood group. allele 1 , has a distribution varying from 5% to 100%, with a maximum in southem Chile and minima in many places. bur mostly among Eskimos. The $F_{S T}$ is levated, and the variogram increases initially.

Peftidase A（PEPA）is poonty sudied and show＇s lit－ tle varation：allele 2 has an average frecuency of only 0.6% ．The variogram is uninfomative and is omitted． Tas：er（PTG T ）is poorly known in this part of the wor：c： it varies be：ween 30% and 100% ，with maxima in south－ em Cnle ard the southwestem pat of Norh America． Minima are among Eskimos．This geographic distribu－ ticn is in some agreement with an advantage for tasters in ar area where arithryoid suestances containing plan：is may be common．at leas：to the extent that Eskimos． who eat essentially mext and fisi are tess exposed to the darger．I：is not clear whether the areas with highest frequencies of tasters have a partizularly frequent occur－ rence of edibie plants dangercus for inyrod function．

Phosphoglucomutase I（PGM／＊1）varies from 55% to $100 \sigma_{0}$ with a mean of 83.5 for ailele 1 ；the maximum is in Venezuela．but a seconcary peax is found in the Nia－ Dene region．There are various minima and an irregular varionram．as is almost usial．PGM2 is less well known ard．in any case，shows less variation．being confined to $80 \%-100 \%$ for allele 1 ．A minimim is in the extreme sol：h．The variogram of PG．W2 is uninfomative

6－phosprognconate dehydrogenase（ $P G D$ ）shows a Sow trequency of ailele B ．with some anomalies in north－ easiem Nort Ameria and in norhern Chile．Allele C is represented on the map，and B has the complementary pat：em．The variogram has a moderate slope

The RH system is aiso highly variable．Alleles C and E span essentially the whole rarge while D is less van－ able，having，on the average． 96 freçuency．C peaks in Panama and is lowest in the Arctic：D is universally high ever： here except for minima on the eastem coast of Norih America（possibly refecting Caucasoid admix－ ture since Europeans have the highest world frequencies of the d ailele（ $R H \cdot]$ ）．E peaks in the Arctic and in the Andes：it is minimal in Panama．．

The mos：frequent $R H$ haplotypes are $C D e(52 \%)$ and cDE（ 36% ），and both span almost the entire $0 \%-100 \%$ range．The first peaks in Panama，and the second，in the Arcic．．Next in frequency are $C D E(4 \%)$ ，which also has several relative maxima in North and South America， up to about 30% ；and $c D e(4.6 \%)$ ，which peaks in the Southwest of North America．Ordinarily cDe is a good marker of Negroid admixture，which，however，seems very unlikely in the Southwest．The cde haplotype is，on the average， 2.5% and can be taken as a good indicator of Caucasoid admixture；not surprisingly，it shows a peak up to 20% on the eastern coast of North America， where we have seen other signs of admixture．It is un－ cerain if the relative maximum in the extreme northwest of Canada should also be interpreted as a result of Cau－ casoid admixture．because the other possible markers do not confirm it．Two rare haplotypes，$C d e$ and $c d E$ ．show minor variations．Haplorype $c d E$ surpasses 3% in a small area of Mexico and reaches $1 \%-2 \%$ in the extreme south of South America．Cde shows very low maxima in Mex－
ico ard in the Southuest of the United Sores The：：raps are oritied．The variograms of $R H$ shou less ex：er？e oscihations arourd the curve than mosi other Amer：この． alleles，probably beause of the greater nu－nber ditula． and slopes are sair！large on the averge

The secretcr locus $S E$ vanes from less thar $-\therefore: 0$ 100% in frequency of the Se a．iele ard has a－av：－．．．． around the ecuator．Pans of the map are roi surfore： by data and are unlikely to represent real varia：oon ：$:$ example the maximum in Floricia，which s extreこた こ： from the high Mexican values，ard the maximum in the extreme south．The minimum in Brazil seems we：！inj－ pored and is not surprising given the high trif obser．ed throushout America．

Transfermin（TF）shows a few troughs of the commer． allele C ．where the allemative allele D reaches re：a－ tive y high frequencies．up to $30{ }^{\circ} \mathrm{c}$ ：in Panama，acriter Venezuela，and Labrador．

The major conclusion is that the Americas．espec：a！＇！ Sourt America．show extreme genetic variabiins This is also shown by average $F_{S T}$ values．which were cai－ culated for the 491 populations seeected ior de：a；ied analysis．Below ue compare the Anercan aneage u：i averages of world groups or regions of interes：：

America	$0.0-0=0.006$
Caucasole（ro exelusions）	$0.043=0.005$
sub－Saharan Africa	$0.055=001.2$
Australia	$0019=0.00$.
New Guinea	$0.039=0.00^{-}$
Folynesia	$0031=0.00$.

In the various regions of Asia．$F_{\text {ST }}$ range from 0.021 （Southwest Asia） 100.035 （Southeast Asia）

Of the various subdivisions of the Amencas．South America has the greatest variation of gene frequencies the average $F_{S T}$ is $0.059=0.006$ ．The gene with the highest variation is $S E * S e(0.30)$ ．followed by $K E L=1 / s a$ （0．19），PGD＊C（0．18），and TF＊C（0．16）．Afeer South America，the extreme North has the greatest variation： $0.051=0.007$（including Eskimo．Aleut．all Na－Dene． and also the Chukchi，who cluster with Eskimos；：the most variable genes are $F Y * A(0.26)$ ，LE＊Le（0．21）， $P C T * T(0.13)$ ，and $K M *(1 \& 1,2)(0.10)$ ．

North and Central America combined，including Na－ Dene but not Eskimos，has a comparatively low average $F_{S T}(0.034 \pm 0.004)$ ．The most variable gene is $A B O * A /$ （0．17），followed by $A(0.13), H L A B * 35(0.12)$ ，and O （0．12）．Of the various linguistic groups，Chibchan shows a variation comparable to that of South America as a whole： $0.059=0.007$ ，with $D I * A$ being the most variable （0．17），RH＊CDE and CDe next（0．13 and 0．11），and finally $T F * D(0.11)$ ．

The impression from the geographic maps and dis－ tributions of gene frequencies is thus fully confimed

Anerica, in paricula: South America is genetcaliy the most varible pant of the world. As a consecuerce, there are extreme csillations of mean $F_{S T}$ values at various geographic distances arourd the interpolated variogam curves that is of the data points stown in variograms. These osaillations tend to be lower oniy for genes with hign densities of observed frequencies. but even there the strong local geographic variation gererates imporian: fluctuations.

The F values incicased in the top rigni comer of the gene-frequency distributions giver in each geographic map are $F_{5 T}$ values; but. unilike those given above, they are obtained from the original gene frequencies. They therefore inciuce populations that have beer. excluded from the 491 selected as genetic references and, more importantly, they were pooled with neighbors. The data from the 491 populations are the basis for the $F_{S T}$ val-

6.13. SYMTHET:C MAPS OF AMERICA

Table 6.13 .1 stows the parition of the :otal variation among the firs seven PCs, which cumulativeiy explain 76.3 of the total variation. The seventy-two genes used for the aralysis correspond to the 6y genenc maps lisied in the Table of Genetic Maps with the addition of $A B C * 42, A K!*!$. GC* $1 F$. Table 6.13 .2 shows corelations of the frst six PCs with gene frecuencies.
The ana!ysis of single genes shows consicerable local varianor. Patteras found for different genes are rarely similar. By contrest, in other concrenis, seveal geographic pattems of single-gere frequancies were observed repeatedly with different genes. In those continerts, one could easity anticipate, on the basis of the repeated patterns, and the rumber of repetitions of each. the general shape of synthetic maps obtained by PCs and their order of importance. In America we find this occurs clearly only for the first two synthetic maps, which correspond closely to the first two fissions in the genetic tree.

The first PC (fig. 6.13.1) shows a north-south gradient with the greates: slope in Canada, thus emphasizing the distinction between the Eskimos + Na-Dene group

Table 6.13.1. Percentage of Total Variance Explained by the First Seven Principal Components of American Gene Frequencies

Principal Component	\% ol Total Variance	Principal Component	\% of Total Variance
1	32.6	5	5.7
2	12.7	6	4.8
3	8.6	7	3.9
4	6.0		

Les giver above. Pooling neizhbors decreases FST values (Cavain-Sfoza and Felcman 1990, ane : :s there: no: suprosing that the $F_{S T}$ values given in the maps are larzer than the $F_{\text {s }}$ s zalculated from the 49 ; populations

An incependen: approach tha: leacs to the same conclusions is the study of mitochonctal DNA. With a low-resolutior echnique the restrictor. fragment-iengit polynorfhisms RFLFs of three inbes. Pima. Maya Ticuna, were s:udied (Wallace ei ai. 1985: Schure e: al 1990), and showed a vatiation of RFLPs s:milat io that of genes indicatec above. Analyzirg D.NA markers makes it easier to identify speciñ mutants and may heir us :c follow specific migrations more closely. Inierences abou: the number of migrants to America that have been mace in some mIDNA papers, even with technigues ailouirg higher resclution than those above, seert largei, unwar ranted at this siage of our knowledge
and Amand fopulations closer to Eskimos on the one side, and the rest of America on the other sicie In South America, there is a differentiation between eas: ard wes: Accordirg to some archaeological dates. nc: universal: accepted (see sec. 6.2). :': e easte.t area ray a'so be the oldest part. There is a good corresponderce with :he frs: fissior., which separates Eskimos and Na-Dene from a!! Armerinds. To rote: the highest correlation of the Ars: PC axis is with /GHGIG3= a a :b0sib3b5, a ypiea! marke: of Asian origin.

Mos: of the divergence found in the map of the seaond PC (fig. 6.13.2) is observed in North America There is little variation in South Americ3. though the easi-wes: difference is always noticeable. In Nort. America the major divergence is between Eskimos and non-Eskimos, with Na-Dene showing more similarities to the former than to the latter. The peak in the eastern part of North America most likely represents Caucasoid admixture; this is the area in which contact between Caucasoids and Amerinds has been longest. This area has $A B O * B$, relatively high $A K 1 * 2$. IGHGIG3*f: bOblb3b4b5 and high $R H * c d e$. strongly indicating Caucasoid admixture.

There is an inconsistency between the observations on the frequencies of the Caucasoid markers just indicated, which are drawn directly from the gene-frequency maps, and the correlations of this PC with the gene frequencies shown in table 6.13.2. The reason for this discrepancy is believed to be the existence of inordinate genetic variation in the Americas, which tends to cover other loial regularities. The presence of im ortant ethnic heterogeneity - that is. of Eskimos in the North also tends to alter the meaning of the cortelations of a

Tate $5: 932$. Geries Showing the Highes: Correations with the First Six Principa Components ol American Gane Frezuencies

P.C.	Range of Corraiaton Coetfe.ent	Genes
1	$1 . \infty-0.90$	$\begin{aligned} & (+j) \text { GHG:GЗ•za:bOStE3E5. HLAE.27 } \\ & (-)- \end{aligned}$
	$0.30-0.50$	$(+) A E C \cdot A, A E C \cdot A 1, A C P: A, A G=X_{1}$ HLAA. G, LE:Le
		(-) AEO:O,AK:1, DI•A, HLAR:1, HLAA• 31, HP: :
	0.80-0.70	(+) HLAB:22, HLAS:40, HLAB:7 (-) IGHG1G3: zax:g. KM (1s:2)
2	0.90-2.80	$\begin{aligned} & (+) \text { HLAA• } 30 \\ & (-)- \end{aligned}$
	$0.80-0.70$	(-) HLAA. 33
		$(-)$ OGD. 4
	0.70-0.60	$(-) J K \cdot 8, G C \cdot 1$
		(-) -
	$0.50-0.50$	(+) MLAAP2, G:O:, HLAE•21
		$(-)$ TF.C.MNS. MS
	0.50-0.40	(-) AEO•A2, AS•X, GO* 1F, HLAE•16, P:•: \rightarrow Fr. S. MLAE: 15, LE:Le(at), RH.D
3	$0.80-0.70$	(+) -
		$(-)$ GHG1G3•2a:505:こう0455
	0.73-0.50	$(+)$ ER•E
		(-) RH:CDE, FH•C, IGNGIG3•:2CO103SAES
	c. $50-0.50$	$(-)$ RH.CCE FH.aDE.
		IGHGIGJ•:a:DCD: 03 ¢m5
		(-) HLAE 5
	0.50-0.40	(+) PTC.T, HLAE. 14
		(-) PGM2-1, LE: $(\theta / a+), J K \cdot A$
4	0.70-0.60	(+) HLAA. 28
		$(-)$ -
	0.50-0.50	(+) HLAA 2 , HLAE - 35 , FGM $1 \cdot 1$
		(-) HLAB. 14
	0.50-0.40	(+) HLAB-21, PGM2.1
		(-) HLAE. 15
5	0.60-0.50	(+) ESD•1, GLO 1 - $1, \mathrm{JK} \cdot \mathrm{B}$
		(-) -
	0.50-0.40	(+) GC=1, FUT2(SE) Se
		(-) IGHGTG3-2a;g, MNS*S, MNS•MS
	0.40-0.30	(+) IGHG1G3.zax:9, HLAB•5, PEPA• 1, $\mathrm{RH} \cdot \mathrm{CDO}_{\mathrm{e}}$
		(-) MNS.MS, RH-cde
6	0.60-0.50	(+) -
		$(-) F Y \cdot B, K E L \cdot K$
	0.50-0.40	(+) HLAB.22, RH•E, RH:CDE, FUT2(SE)-Se
		$(-)$ ABO.B
	0.40-0.30	(+) CHE1-U, GC.1. GC.IF
		$(-)$ -

Fig. 6.13.1 S: Riheti map of the A-tercas ot:3ne= \because using the ̇.rs: prinsipal compone-:

Fig. 6.13.2 Syntheti : map of the Americas obta:ned by using the second principal componert

PC with incuidul gene frequencies cosened in a spe. cif: region

Central Arevica is more simila: :0 Nort. Arrerica than to South. Ameria. Thus, this map shows approximate corespondence with the fission between Na-Dene and Esk mo. but a!so wit: ina: between South America and the res: of the Ameras. It also hight:ights Caucasoid admixure of the easeen par of North Ameriea.

Extreme values for the third PC (fig 6.13.3) are found especial': in South America. the contast being remarkably stong betwer. the norheastam and the southern Andes North America also shows some variation between east and wes: and in the same direction. as in South America. It is possible that the east-west gracierts observed in the north and in the south again express Caucasoid acmixture which. as we have seen when discussing single genes is especially prominent in the east-centra: area ai Norin Amenca, but is not missing in South America Caucasoid admixture is also probably found among Greeniand Eskimos, who were in contact with Vikings. especia. iy on the eastem coast ir. the ninth to foureenth centuries a D. Eventually, the Vikings died of siarvation or were killed by the Eskimos (their fate was never claninec: su: there may have been genetic exchange. If this is tree it is not surprising that one finds some simitarity in the degree of shading of the three aress nat mat have had some Caucasod contribution; some further slarifaction to this proolem comes from the neit PC. An adtixure of another nature - that is.
with Africens - is likeiy to have taken piase in eas:e-. Venezuela and he Guianas.
The fourn PC : 5 g 6.13 1 , a!so has a wes:-:-eas: g:3. dient both in Niorh America and in Sout: Arenea, bu: in contrast to the third PC. the direction of the gradien: is invered in the north and south. The smiarty of the third and fourt PCs adds some evidence to the hypothesis that boin eastem Greenlend and the easier. ccas: of the United States have had some Cacasoid acmix. ture, but the different behavior of the two somporen:s in Guiana may strengthen the hypothesis of admixture with Afrizans in this region.

The fifth componen: (fig. 6.13.5) stresses the diffe:ence between the Panama area and the rest of America. It is also indicative of migration to the south via Panama. The sixtin map (not given) shows very little variation except in the extreme north, where it emphasizes the contrast between the Aleutian islanders and the Yupik Eskimos, occupying the southwestern par of Alaska. with the Eskimos of north-central Canada.

Other authors have used the synthetic map approach in America. O'Rcurke et a! in both North (O'Rourke e: a! 1986: Stuarez et al. 1985) and South America (O Rourke and Suarez 1986), and Salzano anc Callegari-jacques (1988) ir. Soush America. Both groups have fourd evidence of strong genetic drift in South America as we have, and their maps show less regular patems than ours being sorewher more similar to our singlegene maps. Our syninetic maps. however, seem less sensitive

Fig. 6.13.3 Synthetic map of the Americas obtained by using the third principal component.

Fig. 6.13.4 Synthetic map of the Americas obtained by using the fourth principal component.

io crif：than do ircividual genes．Ou－method ob：ains fist maps \therefore irgle genes and proceeds from them to ootarn PCs ard then ineir maps．This tends 10 smooth maps riore ：han the direct calculation of PCs from orig－ inal gene frecuencies of selected groups or the slightly different rapzing method used by O Rourke and Suarez （1986）Differences in methods ine vitably highlight one aspect or arcther：our synthetic maps are aimed at get－ ting genea：simharities．Our single－gene maps are more useful than our synthetic maps for seeing highly local－ ized effects of dnft．
The corclusions from syntheric maps reinforse previ－ ous findings and help visualize major genetic regions． Eskimos．Na－Dene．and Almosan are well characterized and are even further differentiated into subgroups．The Caucasoid infiltration in the eastern United States，in eastern South America，and perhaps in Greenland are clear．The difference between the western and eastern coasts of North America is clear．In South America， several regions can be defined：the Andes show local homogeneity at the level of the higher PCs and always
differ fron he eas：em part of Sou：－trerica．The che： PCs shou ciferences betweer nornem，and entiol 20.0 souther．Andes，with the northem ores more simia：$:=$ Centrai America．The fouth PC emphasizes the unicu．e－ ness of southem Chile．In the eastem part one an こ．s：－ guish a northem egion fomied by eastem Venezued an－ the Guianas（see e eg．．the third PC ；probabit affesez by Africn－gene fow：a cental one formed by norin． em Eraz：，and a southern one corespondirg to southe－： Bazal．There are imporant ecologicai differences amores these areas．and there probab！was greate：exchanga within wher thar between，diferent ecoiogizal－egieris

The color map of the Amencas conveys 65900 the regional variations．In North America there are sree－ and yellow zones．the yellow being Na－Dene speak． ers and the green areas mostly northem Amerind．The color ficture does not supply a clear distinction terween these and Incit（Eskimos）．probabiy beazuse the $1 a$ ：－ ter inhabi：a ven thin area on the coas：．The souts－ empart of North America is gelish．and the pink area at the boundary between southem Arizona．New Mex． ico，and rorthern Mexico is a sor of average fior：vasi． ous local populations：southem la－Dene（Apache art Navajo，who also have some genesic admiture wh Amerinds；and neighboring speakers of Lio－Az：ezan lan－ guages．
Central America shows a complicated mosaic of colors．as expected of a region that was protab： crossed many times by many groups．The area accu－ pied by Chibchan speakers is relative！homogenezus． The Caribbeans are passively stained；there ate no as－ originals lef：

South America is dominated by two colors．ee are blue．neither of which is found in North Americs．Buth colors appear．though not at the same intensity or with． the sarre nuance．in Central America as well．indicating that there are some remnants of the passage across the funnel north of it．Blue extends to the norh and northeast and must represent a dominant direction of migration． where languages of Tucanoan，Caribbean，and Ge stocks are spoken preferentially．The other dominant migration in bright red is found in the southem direction along the Andes．but it did expand from the Andes toward the east． mostly into the Amazon plains，as we have seen from archaeology．Is the white spot in the middle of the Arces near Bolivia and Peru，an indication of a possible inve－se Thor Heyerdahl（1950）effect，the arrival of Polynesians to South America？

6．14．SUMMARY OF THE GENETIC HISTORY OF AMERICA

The gene：ic pattems in the Americas fully confirm the three waves of migration suggested by dental and linguistic evidence：Amerinds．Na－Dene．and Eskimo．

Their order in time is strongly suggested by their noth－ south geographical order．Further refinements may reveal that more than one entry contributed to the first wave
but the archaeciogical iniomation is cor:materon and out understancing of the genetic patern of Amerinds is incomplete. so that funere investigutons are required to sente this problem

Eskimos the las: wave farly rapidy se:te- the A:tic coastal line and rare', occupled the inter:cr. In the extreme east Greenind, they may have mired with Caucasoids, most grobab! because o: cor:ac: whith the Vikings who setted ar Greenlard and evenuahy van. ished uncer farly mysterious circumstances. It seems reasonabie to assume that some of that population was reaosorbed by Greenand Eskimos

The linguistic and geographic split berween northem anc southem Na-Dene is gene:ically clear-cet and prodably reflects gene flow from other Amerinds, espesially in the southern Na-Dene (Apache and Navaio), who had greater opporiunities to receive it, because the: were in more direct cortact.

Amerinds stor a much more complex picture. In North Amenca. there is a banc across the conineat. which is wide in the east. of Caucasoid adrixture. This admixture is also founc elsewhere bu: it is eess intense than in North America. In general, we have tried to avoid using populations in which admixture of some magnitude was suspered. but it was impossib.e to ancia mixed populations entre! withou: introdusirg an unwararted bias

In South America, one can use synthetic maps to distinguish three major geretic regiors: the indes, the Armazon basin. and the southem plateat. They are very different ecologicaliy, and genetic exchange may have been less frequent among :hem than within. The genetic picture within the regions is so variade that ar enormous arrount of genetic d:if: clearly must have occured. This variation is also found in North and Central America. bu: it is somewhat less extreme: besides. much of the genetc variation in .iorth America is a direst consequence of major differences among ethnic groups like Eskimos. Na-Dene and Amerind. maintained over the miliennia by ecological. behavioral, and social separation among the groups. No such obvious original ethnic differences exist in the rest of the continent. Clearly, fissions of tribes. and probably also fusions. have been numerous. Many tribes have probably originated from a small number of founders. justifying the enormous intertribal and interregional drift: they must also have moved around. as they still do, especially in areas like the Amazon and Orinoco basins. An important testimony to the extensive movements of Amerind tribes is the extreme fragmentation of the linguistic map, especially in South America.

It would be interesting to know whether some of the South American linguistic families existed before the passage through Panama and, if so, in which order they entered. The Andean family is found along the Andes, altemating with Paezan and. in some places. with Equatorial. It is not unreasonable to think that the

Andeans entered before the Paezar. giver that the: extend farther south. The Paezan iam. is freser: iNorth America (Fiorica) and is mosi cioses, reated :o Chibchan. which is fourd mosty in Cereval. but also in South America The reiarionship of Chiochan aria Paezs. may antedate their entry in:o Scuth Ameña
It is very diffoult to make inferences abou: the orier of enty of the reaple tho :adsy speak Carb. Equatona: Ge. and Panoan, on the basis of gene:ic data. On the basis of the gecgraphic distribution of hinguistia farifies however. it seems natural to suggest ina: they enieved in the order ir which they are found ir. South Amenca. those located farther south being first. Some subfarmilies. however, have a very wide range the Ecuatorial fami!y for instance, is spoken from Venezuela to Linguay

	West		Eas:
North (lates:)	Chiscrar		
			Cart
	Panoan	Tucancar Equatoria	Ge
South	Paezan		
(earlies:)	Andean		

These consicerations could have more weigh: is there was a good cortelation beiween linguistics are genetios in South America. Lintormate:y, there is no: or it has not yet been found. Moreover, the consicerabie genetic noise caused by drift. and probably highty variable from place to place makes an historical insepretation of the genetic tree less crecible in South Amerta thar. in othe: parts of the word. With very small populations of vaiable size, evolutionary rate from drift is so variable tha: the length of the branches of the tree is hardly indicative of evolutionary time, using distances based on gene frequencies. It is difficult to say if other approaches - for example, using mtDNA - can be more useful

At the moment, the simplest hypothesis is that fissions and movements of tribes, their complex gene flows and fusions, and the contrast that can be expected between the genetic and linguistic effects of fusions between tribes all contribute to dissociare genetic and linguistic evolution and to some extent even their relation with geography in this part of the world. Some regularities emerge from the genetic analysis of major geographic regions in South America but, at a microgeographic level. several poor or negative correlations among genetics, geography, and linguistics show the need for more detailed research, perhaps camied ou! with other methods. The research by Spuhler in North America and that on the Panama Chibchan (Barrantes et al. 1990) reassure us that we are on the right track in assuming a parallelism of genetic and linguistic differentiation in America, that this research model is productive, and some times even more informative than work at a macrogeographic leve!:
however, not every region will be equally favorable for micogeographic analysis
In a mocel designed to test whether the setilement of the Ame-:as cou'd have produced the high genetic variation obsened (Cavalli-Sforza 1986), five assumptions were made: (!) demes (ribes) were of census size 500 (2) the procuced "buds" 25% of the size of the initial cene, (3) bucs doubied in size every generation of 25 years (a rate of growth supponed by many observations on popuiaions in free growth; see ses 2^{7}); they therefore reached the size of a full deme in 50 years, (4) in a sudeing cycle (two generations), a deme moved an average of 250 miles (5 miles per year). (5) It is likely that buds advancing in new temtory had low mortality. living in environments either not contaminated or less contamirated by previous inhabitarts; on the contrary. demes in regions behind the advancing frontier would soon siow down popuiation increase. Perhaps increasing morality uas caused by rapid saturation of local population dens: 3 . It is a nesessary assumption of any expansicn tha: population growth is rapid at the fromie: ard ceases or slows down sorsiderably back of the frontier (Ammeman and Cavalli-Sforza 1984).

Uncer these conditions, the occupation of the Americas sovic be completed in few miliemma, and, in the atsence of admixture between demes, the final genetic iaria::or between demes would even be too high with $N=500$. Gene flow between demes would. of course. reduce genetic variation. Tribal fusiors are bound to have played ar imporant part because the genetic variation would be excessive if the models above are right.

A demic budding and expansion process in two dimensions would probably be random in direction. cemainily unguided except by the search for game. safety. and comion. The idea that a single band wandered across from Asia to America seems unrealistic. Along coasts and rivers, the process would be closer to unidimensional and unidirectional. The average rate of (random) move-
ment of 5 miles per year is iast, beause ats :a-i.... ness means that often, but not a!wals, it wowid ente the group to new tetitory It is of sourse, possite :-a: moverent was by leaps and bourds greate: :ha- - -..es per move if people stayed in the same place for sen eral years in a row. This pattem of repeated moverer.: involves a specific behavior that is not typical of prese.:. day hunter-gatherers (e.g. for Aincan Py gmies: Cana.... Sforza 1986), who move for long distances during :ne year but on esiablished paths and repetitive. we.l-knen. circuits. In the past, Pygmies have cerainiy noved for long distances, in search of new abodes. but it is dif: to find comparable modern situations.

The model is very approximate. and only an acto. rate simulation could give more realistic values. Pertars only at a late: stage, closer to saturation of popusation. density, fusion events would become more commor. i: is difficult to evaluate the saturation density in erivica. ments as diverse and poorly known as those in Soush America. Cleariy. population density gradual'y rose in the Andes to levels much higher than in the rest of the subcontinent. Many urban developments, the skili.is $2 x$ ploitation of the variety of ecological riches and as:ute social management in organized states must have graddally but greatly increased the caming capacity o: he Andean region in the last few millenria

The mos: successful civilizations arose in the tindes and in many parts of Central America where the cimaie was more favorable. No such developments eve: wod place outside the Andes or other parts of Cental America. But in the northem subcontinent. in times be:cre European contac:. Plains tribes were probably of ralatively large size. More sedentary groups lived in communities that reached numbers in the thousancs (Se2 6.4). Thus, wherever population numbers grew. the effects of drift were buffered and. especially where urban communities arose, they were eventually drastically reduced.

